CHAPTER 3 - 13 - (c) Wefindthehorizontaldistancefrom x=v

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
x h θ y v 0 O X P ( c )We find the horizontal distance from x  =  v 0 x t  = (51.2 m/s)(cos 44.5°)(7.32 s) =         267 m . ( d ) The horizontal velocity will be constant:  v x  =  v 0 x  = (51.2 m/s) cos 44.5° = 36.5 m/s. We find the vertical velocity from v y  =  v 0 y  +  a y t  = (51.2 m/s) sin 44.5° + (– 9.80 m/s 2 )(1.50 s) = 21.2 m/s. The magnitude of the velocity is v  = ( v x 2  +  v y 2 ) 1/2  = [(36.5 m/s) 2  + (21.2 m/s) 2 ] 1/2  =          42.2 m/s . We find the angle from tan   =  v y / v x  = (21.2 m/s)/(36.5 m/s) = 0.581, which gives          = 30.1° above the horizontal . 40. ( a ) We choose a coordinate system with the origin at the  base of the cliff, with  x  horizontal and  y  vertical, with  the positive direction up.   We find the time required for  the fall from the vertical motion: y  =  y 0  +  v 0 y t  + 
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 2
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 03/08/2010 for the course PHYSICS 7A/7B taught by Professor All during the Fall '08 term at University of California, Berkeley.

Page1 / 2

CHAPTER 3 - 13 - (c) Wefindthehorizontaldistancefrom x=v

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online