CHAPTER 3 - 20

# CHAPTER 3 - 20 - 66. If v...

This preview shows pages 1–2. Sign up to view the full content.

v WB v SW θ v SB 66. If  v BS  is the velocity of the boat with respect to the shore,  v BW  the velocity of the boat with respect to the water, and  v WS  the velocity of the water with respect to the shore, then  v BS   v BW  +  v WS   , as shown in the diagram.  We find the angle of the boat’s motion with respect to the shore  from the distances: tan   =  d shore / d river  = (120 m)/(280 m) = 0.429, which gives   = 23.2°. The  y -component of  v BS  is also the  y -component of  v BW : v BS y  =  v BW y   = (2.40 m/s) sin 45° = 1.70 m/s. We find the  x -component from v BS x  =  v BS y  tan    = (1.70 m/s) tan 23.2° = 0.727 m/s. For the  x -component of the relative velocity, we use the diagram to get v WS v BW x  –  v BS x  = (2.40 m/s) cos 45° – 0.727 m/s =         0.97 m/s . 67.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 03/08/2010 for the course PHYSICS 7A/7B taught by Professor All during the Fall '08 term at Berkeley.

### Page1 / 2

CHAPTER 3 - 20 - 66. If v...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online