CHAPTER 3 - 20 - 66. If v...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
v WB v SW θ v SB 66. If  v BS  is the velocity of the boat with respect to the shore,  v BW  the velocity of the boat with respect to the water, and  v WS  the velocity of the water with respect to the shore, then  v BS   v BW  +  v WS   , as shown in the diagram.  We find the angle of the boat’s motion with respect to the shore  from the distances: tan   =  d shore / d river  = (120 m)/(280 m) = 0.429, which gives   = 23.2°. The  y -component of  v BS  is also the  y -component of  v BW : v BS y  =  v BW y   = (2.40 m/s) sin 45° = 1.70 m/s. We find the  x -component from v BS x  =  v BS y  tan    = (1.70 m/s) tan 23.2° = 0.727 m/s. For the  x -component of the relative velocity, we use the diagram to get v WS v BW x  –  v BS x  = (2.40 m/s) cos 45° – 0.727 m/s =         0.97 m/s . 67.
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 2
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 03/08/2010 for the course PHYSICS 7A/7B taught by Professor All during the Fall '08 term at Berkeley.

Page1 / 2

CHAPTER 3 - 20 - 66. If v...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online