CHAPTER 3 - 23 - 78. =v v,where RT R T v v tan =v/v,orv...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
v WG v PW θ v PG E N 45° 78.The velocity of the rain with respect to the train is  v RT  =  v R  –  v T   , where  v R  is the velocity of the rain with respect to the ground  and  v T   is the velocity of the train with respect to the ground.   From the diagram we have tan   =  v T / v R   ,    or          v R  =  v T /tan  . 79. If  v PW  is the velocity of the airplane with respect to the wind,  v PG  the velocity of the airplane with respect to the ground, and  v WG  the velocity of the wind with respect to the ground, then  v PG   v PW  +  v WG   , as shown in the diagram.  Because the plane has covered 180 km in 1.00 hour,  v PG  = 180 km/h. We use the diagram to write the component equations: v WGE  =  v PGE  =  v PG  sin 45° = (180 km/h) sin 45° = 127 km/h; v WGN   v PGN  –  v PWN  =  –  v PG  cos 45° – 
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 2
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 03/08/2010 for the course PHYSICS 7A/7B taught by Professor All during the Fall '08 term at Berkeley.

Page1 / 2

CHAPTER 3 - 23 - 78. =v v,where RT R T v v tan =v/v,orv...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online