CHAPTER 3 - 27 - When the jogger is moving toward the stern...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
landing point could be above or below the point directly across the river, that is, positive or negative.  This is also a  good problem for a numerical solution on a spreadsheet, where absolute values can be used. 92. If  v SW  is the velocity of the ship with respect to the water,  v JS  the velocity of the jogger with respect to the ship, and  v JW  the velocity of the jogger with respect to the water, then  v JW  =  v JS  +  v SW  . We choose the direction of the ship as the positive direction.  Because all vectors are parallel, in each case the  motion is one-dimensional. When the jogger is moving toward the bow, we have v JW  =  v JS  +  v SW  = 2.0 m/s + 8.5 m/s =          10.5 m/s in the direction of the ship's motion
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: . When the jogger is moving toward the stern, we have v JW = – v JS + v SW = – 2.0 m/s + 8.5 m/s = 6.5 m/s in the direction of the ship's motion . 93. The centripetal acceleration must equal g : g = v 2 / R = (2p R / T ) 2 / R = 4p 2 R / T 2 ; 9.80 m/s 2 = 4p 2 (0.55 × 10 3 m)/ T 2 , which gives T = 47.1 s. For the rotation speed we have revolutions/day = (86,400 s/day)/(47.1 s/rev) = 1.8 × 10 3 rev/day . 94. The centripetal acceleration is a R = v 2 / r , or r = v 2 / a R . Thus r is minimal when a R is maximal: r min = [(700 km/h)/(3.6 ks/h)] 2 /(6.0)(9.80 m/s 2 ) = 6.4 × 10 2 m = 0.64 km ....
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online