# lecture19-09 - 18.02 Multivariable Calculus(Spring 2009...

This preview shows pages 1–3. Sign up to view the full content.

18.02 Multivariable Calculus (Spring 2009): Lecture 18 Polar Coordinates. Applications March 19 Reading Material: From Simmons : 20.3 and 20.4. From Course Notes : CV. Last time: Changing order of integration, double integrals. Applications. Today: Polar coordinates. Applications. 2 Polar Coordinates We start with the following example: Exercise 1. Find the volume V of a circular disk D of height 1 and radius a . If we use symmetry to simplify we obtain that V = Z Z D 1 dA = 4 Z a 0 Z a 2 - x 2 0 1 dy dx, inner integral: outer integral: 1

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
rectangular coordinates polar coordinates conversions: polar rect x = r cos θ y = r sin θ rect polar r = p x 2 + y 2 θ = tan - 1 y/x In order to transform a double integral in cartesian coordinates into an equivalent one in polar coordinates we need to understand how the inﬁnitesimal element of area dA changes. From the picture one can see that Δ A r Δ θ Δ r hence dA = r dr dθ. We summarize what we discussed in the following way
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 03/08/2010 for the course [email protected]/* <![CDATA[ */!function(t,e,r,n,c,a,p){try{t=document.currentScript||function(){for(t=document.getElementsByTagName('script'),e=t.length;e--;)if(t[e].getAttribute('data-cfhash'))return t[e]}();if(t&&(c=t.previousSibling)){p=t.parentNode;if(a=c.getAttribute('data-cfemail')){for(e='',r='0x'+a.substr(0,2)|0,n=2;a.length-n;n+=2)e+='%'+('0'+('0x'+a.substr(n,2)^r).toString(16)).slice(-2);p.replaceChild(document.createTextNode(decodeURIComponent(e)),c)}p.removeChild(t)}}catch(u){}}()/* ]]> */ 18.022 taught by Professor Gigliolastaffilani during the Spring '09 term at MIT.

### Page1 / 6

lecture19-09 - 18.02 Multivariable Calculus(Spring 2009...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online