Engineering - Fluid Dynamics - Shallow Liquid Simulation Usi

Engineering - Fluid Dynamics - Shallow Liquid Simulation...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: AMATH 581 Homework 2 Shallow Liquid Simulation Erik Neumann 610 N. 65th St., Seattle, WA 98103 erikn@MyPhysicsLab.com November 19, 2001 Abstract A model of shallow fluid behavior is evaluated using a variety of nu- merical solving techniques. The model is defined by a pair of partial dif- ferential equations which have two dimensions in space and one dimension of time. The equations concern the vorticity ω and the stream function ψ which are related to the velocity field of the fluid. The equations are first discretized in time and space. The time behavior is evaluated using a Runge-Kutta ordinary differential equation solver. The spatial behavior is solved using either Fast Fourier Transform, Gaussian Elimination, LU Decomposition, or iterative solvers. The performance of these techniques is compared in regards to execution time and accuracy. Contents 1 Introduction and Overview 2 2 Theoretical Background 4 2.1 Solving for ψ- Matrix Method . . . . . . . . . . . . . . . . . . . 5 2.2 Solving for ψ- FFT Method . . . . . . . . . . . . . . . . . . . . . 6 2.3 Discretize the Advection-Diffusion Equation . . . . . . . . . . . . 6 3 Algorithm Implementation and Development 7 3.1 Construction of Matrix A . . . . . . . . . . . . . . . . . . . . . . 8 3.2 Construction of Matrix B . . . . . . . . . . . . . . . . . . . . . . 9 3.3 Pinning the Value of ψ (1 , 1) . . . . . . . . . . . . . . . . . . . . . 10 1 3.4 Comparing Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.5 An FFT problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4 Computational Results 11 4.1 Results for various initial conditions . . . . . . . . . . . . . . . . 11 4.2 Running times . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.3 Accuracy of solvers . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.4 Symmetry of Solution . . . . . . . . . . . . . . . . . . . . . . . . 18 4.5 Time Resolution Needed . . . . . . . . . . . . . . . . . . . . . . . 18 4.6 Mesh Drift Instability . . . . . . . . . . . . . . . . . . . . . . . . 18 5 Summary and Conclusions 21 A MATLAB functions used 22 B MATLAB code 23 B.1 evhump.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 B.2 evrhs.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 B.3 wh.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 B.4 fr.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 B.5 ev2.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 C Calculations 34 1 Introduction and Overview We consider the governing equations associated with shallow fluid modeling. The intended application is the flow of the earth’s atmosphere or ocean circu- lation. The model assumes a 2-dimensional flow, with not much movement up or down. Another assumption is that the fluid is shallow, ie. that the vertical dimension is much smaller than the horizontal dimensions....
View Full Document

Page1 / 34

Engineering - Fluid Dynamics - Shallow Liquid Simulation...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online