{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

lab3_writeup1 - Dina Muscanell Lab 3 CORDIC Algorithm...

Info icon This preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon
Dina Muscanell Lab 3: CORDIC Algorithm & Custom Instructions ESD II 0618-562-41 1/28/10
Image of page 1

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Abstract: The CORDIC algorithm is an abbreviation for  CO ordinate  R otation  DI gital  C omputer.  The CORDIC algorithm is used to calculate hyperbolic and trigonometric functions.  The  CORDIC algorithm is commonly implemented when there is no hardware multiplier available.  The purpose of this lab is to implement rotation of a VGA image using both software and a  hardware accelerator written in VHDL.  A custom instruction is used to offload processing from software to a hardware  accelerator.  The basic operation of Nios II custom instruction logic is to receive input on the  ‘dataa’ and/or ‘datab’ port, and drive out the answer on the ‘result’ port. The custom instruction  logic provides a result based on the inputs provided by the Nios II processor.  A custom  instruction is a way to reduce a complex sequence of standard instructions to a single  instruction implemented in hardware Theory of operation The SOPC (system on a programmable chip) for this project will contain multiple  memories, a pixel buffer, VGA and multiple other components.  The standard version CPU must  be used with the hardware multiple enabled.  A phase locked loop is created with three output  clocks.   A 50Mhz clock will have an offset of -3ns for the SDRAM, a 50Mhz clock for the phase  locked loop and a 25 Mhz clock for the VGA.  Custom Instructions were also created in the in  the CPU of the system.  The custom instruction will not be visible in the SOPC builder window  because it is located in the CPU.  The custom instruction will accelerate time critical operations.  The custom instruction logic connects directly to the Nios II arithmetic logic unit (ALU).  A block  diagram of the connection can be found in figure 1. Figure 1:
Image of page 2
  Source: http://www.altera.com/literature/ug/ug_nios2_custom_instruction.pdf Discussion The objective of part one of the lab was to write the CORDIC algorithm which is an algorithm to  calculate hyperbolic and trig functions.  The CORDIC algorithm will only require processes for  addition, subtraction, a bit shifter and a look up table.  A state machine is used to decode  between idle, working and done for the CORDIC algorithm.  When the state machine is in the 
Image of page 3

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 4
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern