a151q4wi

# a151q4wi - M ATH 151 Answers to Assignment 4 Autumn 2009 1....

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: M ATH 151 Answers to Assignment 4 Autumn 2009 1. Let u and v be diﬀerentiable functions of x such that u(0) = 9, u (0) = 2, v (0) = 4 and v (0) = −3. The function w is deﬁned by w = u5 /v 3 . Find w (0). w = u5/2 v −3/2 . w = 5 u3/2 u v −3/2 + u5/2 −3 v −5/2 v ; 2 2 w (0) = 5 {u(0)}3/2 u (0){v (0)}−3/2 + {u(0)}5/2 −3 {v (0)}−5/2 v (0) = 2 2 5 {9}3/2 2{4}−3/2 + {9}5/2 −3 {4}−5/2 (−3). Answer: 3267/64 2 2 d 1 + cos2 t. dt d 2 1/2 dt {1 + cos t} 2. Find Answer: 1 2 {1 + cos2 t}−1/2 2 cos t (− sin t) 3. Find f (−1) where f is the function deﬁned by f (u) = (1 − u)8 (1 + u2 )4 (1 + u4 )2 . f (u) = 8(1 − u)7 (−1)(1 + u2 )4 (1 + u4 )2 8 23 f (−1) = 8(2)7 (−1)(2)4 (2)2 + (1 − u) 4(1 + u ) 2u(1 + u ) 42 + (2)8 4(2)3 (−2)(2)2 + (2)8 (2)4 2(2)(−4) + (1 − u)8 (1 + u2 )4 2(1 + u4 )(4u3 ) = 3 × (−8 · 213 ) Answer: −3 × 216 or −196608 4. Find the equation of the tangent to the curve x3 + y 3 = 3xy at the point (2/3, 4/3). Diﬀerentiate both sides with respect to x: 3x2 + 3y 2 y = 3y + 3xy . Substituting x = 2/3 and y = 4/3 gives 3(2/3)2 + 3(4/3)2 y = 3(4/3) + 3(2/3)y . So at (2/3, 4/3), 4/3 + 16y /3 = 4 + 2y ; (16/3 − 2)y = 4 − 4/3 ; (10/3)y = 8/3; y = 8/10. Answer: y − 4/3 = 4 (x − 2/3) or 4x − 5y + 4 = 0 5 5. Find g (x) where g (x) = sec3 (2x). g (x) = 3 sec2 (2x) sec(2x) tan(2x) 2 = 6 tan(2x) sec3 (2x) g (x) = {6 sec2 (2x) 2} × sec3 (2x) + 6 tan(2x) × {3 sec2 (2x) tan(2x) sec(2x) 2} Answer: 12 sec5 (2x) + 36 tan2 (2x) sec3 (2x) end Typeset using AMS-TEX. ...
View Full Document

## This note was uploaded on 03/13/2010 for the course MATH 151 taught by Professor Any during the Winter '08 term at Ohio State.

Ask a homework question - tutors are online