Math HW8 - Perez (nap563) HW08 Zheng (56555) 1 This...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Perez (nap563) HW08 Zheng (56555) 1 This print-out should have 20 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. 001 10.0 points Find the value of the integral I = integraldisplay 5 2 4 9 + ( x- 2) 2 dx . 1. I = 3 2. I = 3 3. I = 4 3 4. I = 1 3 correct 5. I = 2 3 6. I = 2 3 Explanation: Set 3 tan u = x- 2. Then 9 + ( x- 2) 2 = 9 + (3 tan u ) 2 = 9(1 + tan 2 u ) = 9 sec 2 u , while 3 sec 2 u du = dx . Also x = 2 = u = 0 , and x = 5 = u = 4 . In this case I = integraldisplay / 4 12sec 2 u 9 sec 2 u du = 4 3 integraldisplay / 4 du. Consequently, I = 4 3 bracketleftBig u bracketrightBig / 4 = 1 3 . 002 10.0 points Evaluate the integral I = integraldisplay 1 / 2 sin- 1 x 1- x 2 dx . 1. I = 2 72 correct 2. I = 2 4 3. I = 2 9 4. I = 2 8 5. I = 2 18 Explanation: Set x = sin u . Then dx = cos u du, 1- x 2 = cos 2 u , while x = 0 = u = 0 x = 1 2 = u = 6 . In this case I = integraldisplay 6 u cos u cos u du = integraldisplay 6 u du . Consequently, I = bracketleftbigg u 2 2 bracketrightbigg 6 = 2 72 . 003 10.0 points Determine the integral I = integraldisplay 2 ( x 2 + 4) 3 2 dx . Perez (nap563) HW08 Zheng (56555) 2 1. I = x 2 + 4 x + C 2. I = x 2 + 4 2 x + C 3. I = x x 2 + 4 + C 4. I = x x 2 + 4 2 + C 5. I = x 2 x 2 + 4 + C correct 6. I = 1 2 x 2 + 4 + C Explanation: Set x = 2 tan u. Then dx = 2 sec 2 u du , while ( x 2 + 4) 3 2 = ( 4(tan 2 u + 1) ) 3 2 = 8 sec 3 u . Thus I = integraldisplay 4 8 sec 2 u sec 3 u du = 1 2 integraldisplay cos u du , and so I = 1 2 sin u + C = 1 2 sin parenleftBig tan- 1 x 2 parenrightBig + C . But by Pythagoras u radicalbig x 2 + 4 2 x we see that sin parenleftBig tan- 1 x 2 parenrightBig = x x 2 + 4 . Consequently, I = x 2 x 2 + 4 + C with C an arbitrary constant. keywords: trig substitution 004 10.0 points Evaluate the definite integral I = integraldisplay 1 3 x 2 1 + x 2 dx . 1. I = 3 4 (4- ) correct 2. I = 3 4 ( - 2) 3. I = 3 8 ( - 2) 4. I = 3 4 (4 + ) 5. I = 3 8 (4- ) 6. I = 3 8 ( + 2) Explanation: Let x = tan ; then dx = sec 2 d, 1 + x 2 = sec 2 , while x = 0 = = 0 , x = 1 = = 4 . In this case, I = 3 integraldisplay / 4 tan 2 sec 2 sec 2 d = 3 integraldisplay / 4 tan 2 d . Perez (nap563) HW08 Zheng (56555) 3 But tan 2 = sec 2 - 1, so I = 3 integraldisplay / 4 ( sec 2 - 1 ) d = 3 bracketleftBig tan - bracketrightBig / 4 . Consequently I = 3 4 (4- ) . 005 10.0 points Determine the indefinite integral I = integraldisplay 2- x x 2- 1 dx ....
View Full Document

This note was uploaded on 03/17/2010 for the course MATH 408 L taught by Professor Zheng during the Spring '10 term at University of Texas at Austin.

Page1 / 11

Math HW8 - Perez (nap563) HW08 Zheng (56555) 1 This...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online