# Math HW6 - Perez(nap563 – HW06 – Zheng –(56555 1 This...

This preview shows pages 1–3. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Perez (nap563) – HW06 – Zheng – (56555) 1 This print-out should have 17 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering. 001 10.0 points Determine the integral I = integraldisplay 1 1 + 25( x- 6) 2 dx . 1. I = 5 tan- 1 parenleftBig x- 6 5 parenrightBig + C 2. I = sin- 1 5( x- 6) + C 3. I = 5 sin- 1 parenleftBig x- 6 5 parenrightBig + C 4. I = tan- 1 5( x- 6) + C 5. I = 1 5 tan- 1 5( x- 6) + C correct 6. I = 1 5 sin- 1 5( x- 6) + C Explanation: Since d dx tan- 1 x = 1 1 + x 2 , the substitution u = 5( x- 6) is suggested. For then du = 5 dx , in which case I = 1 5 integraldisplay 1 1 + u 2 du = 1 5 tan- 1 u + C , with C an arbitrary constant. Consequently, I = 1 5 tan- 1 5( x- 6) + C . keywords: 002 10.0 points Evaluate the definite integral I = integraldisplay 1 4 1 √ 1- 4 x 2 dx . Correct answer: 0 . 261799. Explanation: Since integraldisplay 1 √ 1- x 2 dx = sin- 1 x + C , a change of variable x is needed to reduce I to this form. Set u = 2 x . Then du = 2 dx , and x = 0 = ⇒ u = 0 , while x = 1 4 = ⇒ u = 1 2 . In this case I = 1 2 integraldisplay 1 2 1 √ 1- u 2 du = bracketleftbigg 1 2 sin- 1 u bracketrightbigg 1 2 . Consequently, I = 1 2 arcsin parenleftbigg 1 2 parenrightbigg = 0 . 261799 . 003 10.0 points Determine the indefinite integral I = integraldisplay ( 1- x 2 )- 1 / 2 4- 3 sin- 1 x dx . 1. I = 1 3 ( 4- 3 sin- 1 x ) 2 + C 2. I =- 1 6 ( 4 + 3 sin- 1 x ) 2 + C 3. I =- 1 6 ln vextendsingle vextendsingle 4 + 3 sin- 1 x vextendsingle vextendsingle + C 4. I =- 1 3 ln vextendsingle vextendsingle 4- 3 sin- 1 x vextendsingle vextendsingle + C correct 5. I = 1 3 ln vextendsingle vextendsingle 4- 3 sin- 1 x vextendsingle vextendsingle + C 6. I = 1 6 ( 4 + 3 sin- 1 x ) 2 + C Perez (nap563) – HW06 – Zheng – (56555) 2 Explanation: Set u = 4- 3 sin- 1 x . Then du =- 3 √ 1- x 2 dx =- 3 ( 1- x 2 )- 1 / 2 dx , so I =- 1 3 integraldisplay 1 u du =- 1 3 ln vextendsingle vextendsingle 4- 3 sin- 1 x vextendsingle vextendsingle + C . Consequently, I =- 1 3 ln vextendsingle vextendsingle 4- 3 sin- 1 x vextendsingle vextendsingle + C . 004 10.0 points Evaluate the definite integral I = integraldisplay π/ 2 4 sin θ 1 + cos 2 θ dθ . 1. I = 5 4 π 2. I = π correct 3. I = 3 4 π 4. I = 3 2 π 5. I = 7 4 π Explanation: Since d dθ cos θ =- sin θ , the substitution u = cos θ is suggested. For then du =- sin θ dθ , while θ = 0 = ⇒ u = 1 , θ = π 2 = ⇒ u = 0 , so that I =- 4 integraldisplay 1 1 1 + u 2 du = 4 integraldisplay 1 1 1 + u 2 du , which can now be integrated using the fact that d du tan- 1 u = 1 1 + u 2 ....
View Full Document

{[ snackBarMessage ]}

### Page1 / 8

Math HW6 - Perez(nap563 – HW06 – Zheng –(56555 1 This...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online