Tutorial 1 1104B, Fall 2007
1. 1.Find a Row Echelon Form and the Reduced Row Echelon Form of the
following matrix:
A
=
3
6
1
6
3
4
2
4
1
6
3
4
1
2
1
2
3
0
4
8
3
10
6
10
R
n
1
=
R
3
R
n
3
=
R
1
1
2
1
2
3
0
2
4
1
6
3
4
3
6
1
6
3
4
4
8
3
10
6
10
∼
R
n
2
=
R
2
-
2
R
1
R
n
3
=
R
3
-
3
R
1
R
n
4
=
R
4
-
4
R
1
1
2
1
2
3
0
0
0
-
1
2
-
3
4
0
0
-
2
0
-
6
4
0
0
-
1
2
-
6
10
R
n
2
=
-
R
2
R
n
3
=
-
R
3
R
n
4
=
-
R
4
1
2
1
2
3
0
0
0
1
-
2
3
-
4
0
0
2
0
6
-
4
0
0
1
-
2
6
-
10
∼
R
n
3
=
R
3
-
2
R
2
R
n
4
=
R
4
-
4
R
2
1
2
1
2
3
0
0
0
1
-
2
3
-
4
0
0
0
4
0
4
0
0
0
0
3
-
6
This is my REF. Now for RREF.
R
n
3
=
1
4
R
3
R
n
4
=
1
3
R
4
1
2
1
2
3
0
0
0
1
-
2
3
-
4
0
0
0
1
0
1
0
0
0
0
1
-
2
∼
R
n
1
=
R
1
-
R
2
1
2
0
4
0
4
0
0
1
-
2
3
-
4
0
0
0
1
0
1
0
0
0
0
1
-
2
∼
R
n
1
=
R
1
-
4
R
3
R
n
2
=
R
2
+ 2
R
3
1
2
0
0
0
0
0
0
1
0
3
-
2
0
0
0
1
0
1
0
0
0
0
1
-
2
∼
R
n
2
=
R
2
-
3
R
4
1
2
0
0
0
0
0
0
1
0
0
4
0
0
0
1
0
1
0
0
0
0
1
-
2
1a.
Find all possible basic and free variables of a system whose coeffcient
matrix is
A
. Awnser:
x
1
,
x
3
,
x
4
, and
x
5
are basic variables and
x
2
This
preview
has intentionally blurred sections.
Sign up to view the full version.

This is the end of the preview.
Sign up
to
access the rest of the document.
- Fall '10
- Unknown
- Linear Algebra, Algebra, Gaussian Elimination, Row echelon form
-
Click to edit the document details