{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Tutorial 1 Solutions

# Tutorial 1 Solutions - Tutorial 1 1104B Fall 2007 1 1.Find...

This preview shows pages 1–2. Sign up to view the full content.

Tutorial 1 1104B, Fall 2007 1. 1.Find a Row Echelon Form and the Reduced Row Echelon Form of the following matrix: A = 3 6 1 6 3 4 2 4 1 6 3 4 1 2 1 2 3 0 4 8 3 10 6 10 R n 1 = R 3 R n 3 = R 1 1 2 1 2 3 0 2 4 1 6 3 4 3 6 1 6 3 4 4 8 3 10 6 10 R n 2 = R 2 - 2 R 1 R n 3 = R 3 - 3 R 1 R n 4 = R 4 - 4 R 1 1 2 1 2 3 0 0 0 - 1 2 - 3 4 0 0 - 2 0 - 6 4 0 0 - 1 2 - 6 10 R n 2 = - R 2 R n 3 = - R 3 R n 4 = - R 4 1 2 1 2 3 0 0 0 1 - 2 3 - 4 0 0 2 0 6 - 4 0 0 1 - 2 6 - 10 R n 3 = R 3 - 2 R 2 R n 4 = R 4 - 4 R 2 1 2 1 2 3 0 0 0 1 - 2 3 - 4 0 0 0 4 0 4 0 0 0 0 3 - 6 This is my REF. Now for RREF. R n 3 = 1 4 R 3 R n 4 = 1 3 R 4 1 2 1 2 3 0 0 0 1 - 2 3 - 4 0 0 0 1 0 1 0 0 0 0 1 - 2 R n 1 = R 1 - R 2 1 2 0 4 0 4 0 0 1 - 2 3 - 4 0 0 0 1 0 1 0 0 0 0 1 - 2 R n 1 = R 1 - 4 R 3 R n 2 = R 2 + 2 R 3 1 2 0 0 0 0 0 0 1 0 3 - 2 0 0 0 1 0 1 0 0 0 0 1 - 2 R n 2 = R 2 - 3 R 4 1 2 0 0 0 0 0 0 1 0 0 4 0 0 0 1 0 1 0 0 0 0 1 - 2 1a. Find all possible basic and free variables of a system whose coeffcient matrix is A . Awnser: x 1 , x 3 , x 4 , and x 5 are basic variables and x 2

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}