Linear Algebra pdf

Linear Algebra pdf - Linear Algebra in Twenty Five Lectures...

Info iconThis preview shows pages 1–5. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Linear Algebra in Twenty Five Lectures Tom Denton and Andrew Waldron March 9, 2010 1 Contents 1 What is Linear Algebra? 6 2 Gaussian Elimination 10 2.1 Notation for Linear Systems . . . . . . . . . . . . . . . . . . . 10 2.2 Reduced Row Echelon Form . . . . . . . . . . . . . . . . . . . 12 3 Elementary Row Operations 16 4 Solution Sets for Systems of Linear Equations 21 4.1 Non-Leading Variables . . . . . . . . . . . . . . . . . . . . . . 21 5 Vectors in Space, n-Vectors 26 5.1 Directions and Magnitudes . . . . . . . . . . . . . . . . . . . . 28 6 Vector Spaces 32 7 Linear Transformations 37 8 Matrices 42 9 Properties of Matrices 47 9.1 Block Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 47 9.2 The Algebra of Square Matrices . . . . . . . . . . . . . . . . 48 10 Inverse Matrix 53 10.1 Three Properties of the Inverse . . . . . . . . . . . . . . . . . 53 10.2 Finding Inverses . . . . . . . . . . . . . . . . . . . . . . . . . . 54 10.3 Linear Systems and Inverses . . . . . . . . . . . . . . . . . . . 55 10.4 Homogeneous Systems . . . . . . . . . . . . . . . . . . . . . . 55 10.5 Bit Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 11 LU Decomposition 59 11.1 Using LU Decomposition to Solve Linear Systems . . . . . . . 60 11.2 Finding an LU Decomposition. . . . . . . . . . . . . . . . . . 61 11.3 Block LU Decomposition . . . . . . . . . . . . . . . . . . . . . 63 2 12 Elementary Matrices and Determinants 66 12.1 Permutations . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 12.2 Elementary Matrices . . . . . . . . . . . . . . . . . . . . . . . 70 13 Elementary Matrices and Determinants II 74 14 Properties of the Determinant 80 14.1 Determinant of the Inverse . . . . . . . . . . . . . . . . . . . . 83 14.2 Adjoint of a Matrix . . . . . . . . . . . . . . . . . . . . . . . . 83 14.3 Application: Volume of a Parallelepiped . . . . . . . . . . . . 85 15 Eigenvalues and Eigenvectors 87 15.1 Invariant Directions . . . . . . . . . . . . . . . . . . . . . . . . 87 16 Eigenvalues and Eigenvectors II 93 16.1 Eigenspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 17 Subspaces and Spanning Sets 98 17.1 Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 17.2 Building Subspaces . . . . . . . . . . . . . . . . . . . . . . . . 99 18 Linear Independence 103 19 Basis and Dimension 109 19.1 Bases in R n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 20 Diagonalization 115 20.1 Change of Basis . . . . . . . . . . . . . . . . . . . . . . . . . . 119 21 Orthonormal Bases 122 21.1 Relating Orthonormal Bases . . . . . . . . . . . . . . . . . . . 125 22 Diagonalizing Symmetric Matrices 130 23 Kernel, Range, Nullity, Rank 135 24 Gram-Schmidt and Orthogonal Complements 140 24.1 Orthogonal Complements . . . . . . . . . . . . . . . . . . . . 142 25 Least Squares 145 3 Preface These linear algebra lecture notes are designed to be presented as twenty five, fifty minute lectures suitable for sophomores likely to use the material for...
View Full Document

This note was uploaded on 03/23/2010 for the course MAT 022A taught by Professor Pon during the Spring '10 term at UC Davis.

Page1 / 148

Linear Algebra pdf - Linear Algebra in Twenty Five Lectures...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online