ex2_7 - text(1.3,-.3,'Approximate solution, T=0.2') hold...

This preview shows page 1. Sign up to view the full content.

% Example 2.7 % exact solution is plotted with a solid line T = 0.2; R = 2;L=1;C=1; vc0=[1 1-T];x0=[0 sin(T)]; n=2:40; c=[R*T/L-2 1-R*T/L+T^2/L/C]; d=[0 0 T^2/L/C]; x=sin(T*n); vc1=recur(c,d,n,x,x0,vc0); vc1=[vc0 vc1]; % augments the I.C. onto the solution n = 0:40; % define n accordingly % % calculate exact answer t=0:.04:8; vc2 = 0.5*((3+t).*exp(-t)-cos(t)); plot(n*T,vc1,'o',t,vc2,'-') % the following inserts a legend hold on plot([.5 .8 1.1],-.3*[1 1 1],'o',[.5 .8 1.1],-.15*[1 1 1]) title('Example 2.7, T=0.2') ylabel('vc(t)') xlabel('Time (sec)') text(1.3,-.15,'Exact solution')
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: text(1.3,-.3,'Approximate solution, T=0.2') hold off pause % % rerun with T = 0.1 T = 0.1; R = 2;L=1;C=1;vc0=[1 1-T];x0=[0 sin(T)]; n=2:80; a=[R*T/L-2 1-R*T/L+T^2/L/C]; b=[0 0 T^2/L/C]; x=sin(T*n); vc1=recur(a,b,n,x,x0,vc0); vc1=[vc0 vc1]; n = 0:80; % plot(n*T,vc1,'o',t,vc2,'-') % insert the legend hold on plot([.5 .8 1.1],-.3*[1 1 1],'o',[.5 .8 1.1],-.15*[1 1 1]) title('Example 2.7, T=0.1') ylabel('vc(t)') xlabel('Time (sec)') text(1.3,-.15,'Exact solution') text(1.3,-.3,'Approximate solution, T=0.1') hold off...
View Full Document

This note was uploaded on 03/24/2010 for the course CENG 4331 taught by Professor Maryrandolph-gips during the Fall '09 term at UH Clear Lake.

Ask a homework question - tutors are online