Homework 9

# Homework 9 - This print—out should have 24 questions...

This preview shows pages 1–6. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: This print—out should have 24 questions. Multiple—choice questions may continue on 1. I = 3 the next column or page w ﬁnd all Choices 2 before answering. 1 2. f = m 001 10.0 points 2 3 . . 3 v, Evaluate the definite integral 3. I 3 ~12: ‘ 3 M2 ‘ I : ﬂdx. __ 1 new 1 4. I ~— —-——— 2 . yr t»ij g sz't“? to NIH % m 002 10.0 points Evaluate the integral 2 arr/4 3 138.112 3,; ____ 4 3‘ I z 3 a.) .21! xxx-gt W I : WWW—m— dac. , 0 W COS x 3 Tr r; 41’; __ ‘1 ‘ 7 MA. I ‘l a 4 I W "“ (I? D‘ 1. I = —2 ’of 17:22»: “ “ l W " “tn ,_-»/2*‘—-~\ ‘3’ “r?” w E /'/ If "H A.‘ J. 2 3 35‘ élmzwsté V L] "(MK C5 //g. I z L9 K m .‘ _- n : WK (3 133.,“ “2/ _,.—""“ If,“ a _,,,,. "' i i/ “f; ‘. ” — w K > , Co 1: *1 5N 1—] j l 0 f, w/«r h); ’2}. _,_,_ 3. I = —1 5’ Lf anx/B’. I m (ax/i 9' [a f H . ‘Q _ 0’) % w if: {305 10.0 points 5. I m 0 1 __.._._ I Determine the indeﬁnite integral 003 10.0 pomts ‘ I _ 2 + m Evaluate the integral — 2 __ 1. dz” ‘ ’3 In ﬂ/Slutanzwd' 1 a: m 0 1»I=2(ta,n' (~\~\W)+J. \2/ miller (dkm645) w HWUQ - hamrick A (57395) 2 »/-'"“"5'.§” I m ‘ ‘ ‘ 6- I 3”" 2 tan—1 + V 4 ""“ 372 + 0 Determine the indeﬁnite integral "1 006 10.0 points I ____ 2mm x/SE n, ,,,,,, MW _. W 3 1. tan—1 m 21n(1 + :6) + 0 d1: . Evaluate the integral XLY'IW‘) L1 2. I m 4\$taﬂm1\$+2V1+CIﬁ+C [a 1 I m 4111 I‘V-f’f-w“ «3:2; MWELW [3235’ 3.1m4x/Etan“i\/§+2x/1+\$+C 5 I?— ,-!+“" ‘ 2 I = 4111 ~— w M- r L» (3) ‘: O E“ g 4. I = 2M5Etan“1\/E~ln(1+m)+0 , :1 My raj) ML“ 5 (law E -— i éwmd.” M ,h w w. 3 I \m?! j 5. I = 2\$tan 131m111(1+37) +0 6’: _1_1 1 '; Hy m. {.A mm) f “1 /‘ Q” “U ' _ 6.I=2mtan 33+ l—i—m-I—C’ _\ 71 \ 1W5) ' x (w W " .‘ ‘ "f s 009 10.0 oints .35 :m p 3 , ' M . . . I! “W” etermme 1f the Improper integral 6- I z "’3'" I «a ‘ "3 1 ilk-“1“ I I =-" / d’U 3:" «‘3 «y “00%;” [WX 007 10.0 points —m 6 ~ I? U k (-5-;- «AW? \. Evaluate the integral is conver em; or diver (ant, and if convéiiééh—ﬁjii 59"} g g in 8 ﬁnd its value. .75 I = x/reagwklda: "9 1m. j. i; EH3 M1“ LN»: wzﬁﬁ‘ 1 I m 3 i v M m / "M v* " Rel? ' )- __ 2-“th 2': agdu-f t ‘ ‘ 1 I '" 1+1” was)“ {gﬁ-ww [MEI—f1” 2 I = 6 «2;.wa M H 1 3:: db ma- ?” 7" ax Hw- .‘ V var“ .. 2. I m I ——— ~ in 3 u”"‘ m: "35:: m __ 3 p 2" {1‘ "'WM 1 ' ‘ Em 2 /" .D "‘ 3. I —-- “ ﬂy /3 I. a ‘ I x‘ m 3. 6 DJ.” 2 c”. M (‘54): f-WW‘WW” ‘3 1 I h-Qf at. \ L E d”WWMummy; -- r I f, .\ I __ r m :1, L m a T. M; (/w‘ . , ‘ w ' 3. I —— 2 + Y I: 1 ﬂaw u him-m 4° I 15 divergga r A . A. " n “Mm mm» 1.: Aron-O + mum} x —,‘ v 243%} MT,\ #7 gr“ \V\ “U :L u):¢"§tf:7ﬁ*"‘ “we-:53” 5 . . | 7 . ‘F J; “1‘... «I... :1, gumilx'MrV‘ ,,_ "" um miller (dkm645) w ewes) »- hamrick — (57395) 3 is convergent or divergent, and if convergent, 5. I m __ ﬁnd its value. 2 wwihmwﬁ. 1 Z {A 45 ’ M m- 2 a (V '7 010 )91) points 1' I ”"”“ 27‘" {, live) ( . . /. . ‘2-- 4, u. Dete erf’fﬁe 1mproper1ntegral 2. ’I is divergent 2..“ 6 CO __ ‘ "" 9 "2,73,! .2 3 1mg rmwawrﬁml converges, and if it does, compute its value. , LIZ; w 1 4. I m — 1. I does not converge \ M47? 2. I = 5, I m g— 3 I: 6.?“% 013 10.0 points Determine if the improper integral \Mf 1“; 1 31 2 011 10.0 points it. 0 ’ Determine if the improper integral is convergent or divergent, and if convergent, .1. ﬁnd its value. a DO 1 ’ I. (.1 ‘ ‘t 3w... CR" -.~ I z W dz: W /5 x -_ * f8 a:(1n 3.93)2 {re-9G5}; . o, 33.2 ’ converges, and if it does, compute its value. (f; f 5:4, Zuqudltm 2. I is divergent J __ r! "1.1%.!- O 7’ I; 1“ EU 3 I m 31 2 1” '3’” “Vi” ' if m (n + ) twiiﬁriwee “M m. i v“ .- ; QM _ t m £4}: “3. g. I .\ .3 w new be?“ / _ ' , 4. I 3 20112—1) Vim/2» I w 0% [A , ,u. Lt ‘ J, M. _, v .1“ m P, ﬂu.» I g 1‘ (a if,“ u ﬁnely) \$14,567“ Erwin E I _. “Ev ' 5. : 3(ln2w2); i din (DNCI-VVZ» '— @‘B “m V“ “ 6.1 w 2(1112-4-1) 1 ,_N_,r...______-_.. .. 5. I 2 m r ,_,.— ~~"' 36 ‘\ 7- I x 60:12 _ : ‘ ﬂ 1 “Ema-MMM‘W"_,,,,.J=~*"“M 111 38 014 10.0 points 012 10.0 points u _ ‘ . , . ‘ _ The reglon R 18 bounded by the m—ams and Determlne 1f the IIIlpI‘OpGI‘ Integral the graphs of 1 - ~1 2' sm :2: 2 I m z _ din : W = . 0 WW 9 ma m 1 ; - S (V‘: I PK _ am“ ‘YLV‘ 2H5? = l V .4: miiier (dkm645) — HWOQ M--- hamrick A (57395) 4 A part of “R is ShOWIl as the shaded region in Determine Whether the partial derivativee fm, fy of f are positive, negative or zero at the point P on the graph of f shown in \‘\ I ¢ w ’i we age!!! #2" Compute the voiume of the solid of revolution obtained by rotating 7?, around the w»axis. ‘i-W" if; wr K1.» 1. volume m 11:“ Q<igﬂm N \3/ E _® H 5-5; :1 Jere ,2 33\$ e: l x ’7‘ e H :3 L 3. volume = 2th '13,“:qu60 up?“ :1“ 5. voiume = 3w “\- ‘\_,/ M F l l c: 6. volume infinite 015 10.0 points Determine fm + fy when 7. fa; > 0, fy > O f(:c,jg 24m2+\$y—2y2+3m+2y. 8. f\$<0, f >0 9‘ 017 10.0 points Determine f3; when \-M__~W:W;W_M'M I ' f (m, y) m a: eoe(m + y) + sin(:r; + y) . 1. f3; = 2cos(\$+y)+\$sin(m+y) 4 f\$+fy = 7m+5y+1 2. fm = 231n(m+y)+93cos(cc+y) 5 fag—inf?) =2 7m+5y+5 3. fx 2 2mcos(a3+y) 6 fm+fy m 7x-——3y+1 4- ft m 2511101: + y) — meoskc «+~ y) 016 10.0 points 5. f3: ""23: sin(:a + y) miller (dkmﬁéﬁ) HW09 e hamrick «» (57395) 5 6.ﬁ;m—w\$Mm+m a‘ﬂﬁw)m(x—&m+ﬂymM) 7' z m COSW + 021 (part 2 of 4) 10.0 points m 2 w ' @x COS“: “if” 3mm“: + 10 (ii) Determine fy for the function f. 018 ' 10.0 oints Kn.) p 1. fy(m,y) = (:1:+2)(33+2y+2) Find the slope in the zit—direction at the point (2,42, 0) on the graph off when 2. ifywyy) = (x m 8X3; W 2.9, m 14) ﬂnywmmﬁ+m%- VMW~ Ergﬂt§ 3. 'y(;v,y) 2 (a: +2) (53 + By —- 14) a 3; ‘L—wa} ~[2-f X tlbﬁi‘gy “'2‘? .019 10.0 points "1"" 4" L" 4mnww)ﬂ(y+@@\$+ym@ Find the vaiue of f3 and fy'at (1, ml) when *5“ 2 2 5- rim) = (yw8)(2rc+y~14) ﬂing] :2 i—Zm +3y. 022 (part 3 of 4) 10.0 points 1.ﬁn =1, 5‘ :21 ‘ _ (1?“1) (11—1) (iii) Determine fm + .ny for the function f. z w m9, ' =1 . M f‘ (1,—m1) j” (1,—1) 1- fyyxmay) = 113+9 —* 6 e . =1, m—41 , , , lm4> Eben [email protected])\$2@+y+ﬂﬂ n . mg, ‘ ==Wu f” (1,4) fy (1,—1} 3. (fm+ fWXImy) : 33+y+ 10 5. f f] z -8 44444 xarw yo4> ;“a(nw+tnew)=2e+ym6)“\ omumm1ﬁ®1mmmms ‘““w -w we _ 5-mm+nnen)¥2e+y—m) A function f is deﬁned by Hm, y) m (a: + 2m; ‘- 8m: + y W 6)” 023 (Part 4 of 4) 10.0 points ('1) Determine fa: for the function f. (iv) Determine fivy for the function f, wwwizﬁﬁrm‘f:-mhw\- L.hmw)=([email protected]+y+& _ .gfﬂWWw)mzﬂ+%_¢a Q , '2‘! j 5:. LE-v' i, S‘x-j -f«- 5% 3v w‘, 1%}, “4.1% . ‘ mgﬂﬂ/ﬂ/ ii (y—&@m+yw® 2-hMey)=\$+ﬂymﬂ '3 X {j J“:31- "‘\‘"3 " “5‘4"” 842:" : ‘3‘?” '“' I U) 3‘5 i "‘7': ‘1‘”:3‘ fmngy) z 233 "1” y m" 1-6 zx+1 "‘1 J “j 4. jammy) ﬂ 2x+2y~16 miller (dkm645) ~~ HWOQ ~~ hamrick — (57395) 6 5. f\$y(zc,y) = 2\$+2y+16 024 10.0 points Determine the second partial of 1” when 2 2 “PM? ‘ 4m 4L ‘ mm m — + i. v» y 63, 833 y x 1 z 33'" W“ EVE-é- r X) ._ 3 W = “1:2” "" {in 349 hmwm; « v 1(3) é}: 4. fmy = 8:1: + y va‘W-I ! 5 .— + y W m 11/2 3x2 ...
View Full Document

## This note was uploaded on 03/24/2010 for the course M 57395 taught by Professor Hamrick during the Fall '09 term at University of Texas.

### Page1 / 6

Homework 9 - This print—out should have 24 questions...

This preview shows document pages 1 - 6. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online