{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

# 08 - 1208 nnn P 24 25 26 27 29 177 11 P P 121 126 <,< G...

This preview shows pages 1–7. Sign up to view the full content.

1 1 1 121 126 P P - 177 24, 25, 26, 27, 29 . P n n n , 3:30-5:30 1 : ª* 1108 ª* 1208

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
2 §4 ¸> ò ·ª* 11 ( ) , n V F F σ λ ξ σξ λξ = 5 ÷ •♠ ÷ •♠ 5 ÷ •♠ ÷ •♠ λ λ σ λξ = σξ ξ = λ λ V V V } { 12 §4-1 À n + λ σ ξ σ λ n + n +
3 ). ( ) ( , ) ( ) ( . , , : α λα = σα = α σ α = β α β 2200 α α λα = σα σα α 2200 L k k k k L L W W proof n n n n n . , , 1 σ λα = σα α 2200 λ λ λ V V V n n n n n n n n σ ξ ξ ξ ξ λ ) , , 1 ( ) ( , , 2 1 r i L V i r = 1: , example W W σ σ . σ

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
4 ). ( ) ( ) ( 2 1 r L L L V ξ ξ ξ λ = ). ( 0 ) ( λε - σ = = α λε - σ λα = σα α 2200 λ λ Ker V V n n . 0 ) det( 0 ) ( } 0 { ) ( = λ - = λ - λε - σ I A X I A Ker n n . 0 ) det( = λ - λ σ λ I A n n n n n n n n A V n . , , , ( : 2 1 ε ε ε σ σ AX X σα λα λ = = Q
5 . ) det( ), det( ) det( ) ( det ) det( 1 1 I A I B I AP P P I A P I A λ - λ - = λ - = λ - = λ - - - . ) det( ) ( 13 1 1 1 1 1 1 σ σ λ - = λ I A f A 1 0 : ( ), ( ) , n m m A M F V f X a X a X a F σ = + + + ° ″↵ 1 0 1 0 ( ) 0, ( ) 0, ( ) ( ) . m m m m f A a A a A a I f a a a f X A σ σ σ ε σ = + + + = = + + + = °

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
6 . 0 ) ( ), det( ) ( = - λ = λ - A f A I f Cayley Hamilton A A n
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 18

08 - 1208 nnn P 24 25 26 27 29 177 11 P P 121 126 <,< G...

This preview shows document pages 1 - 7. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online