&auml;&sup1;&nbsp;&eacute;&cent;˜&egrave;&reg;&uml;&egrave;&reg;&ordm;&egrave;&macr;&frac34;5

# &auml;&sup1;&nbsp;&eacute;&cent;˜&egrave;&reg;&uml;&egrave;&reg;&ordm;&egrave;&macr;&frac34;5

This preview shows pages 1–14. Sign up to view the full content.

1 h ¡ »ª *

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
2 π h:> ·ª 0 1 :>·ª* 2 øm&» 2 0• 2 1 :> ·ª* 2 2 2 3 :>·ª
3 2 1. s 2 1 2 . “ ð û ! S S ðû! ˜7¾´* À9>· ª* ( 0 = ∫ ∫ S E E E d (S) 2 2 2. 2 s - q + q S 2 3. P 7 S 2 2 2 2

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
4 - Q + Q R 1 R 2 S “ Xu&» ª S p T S 2 2 ˜7¾´ * ” €¶ ª* ( ˆù º ¸€ ¶ª * * + Q E - Q €¶ª * R 1 2 R 2 È“& ´* S E °¿ S E E 0 = q E E E
5 2 2 2 2 S E q S S S E S E E E E E S E E : Q ? E s S E E E E Q , Q 7¾´* ? E E

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
6 2 2 2 . ´* d €¶ ª S E X€ ª* +Q E -Q °S E d 2 0 2 π 4 d Q f ε = S d +Q -Q 2 A 2 s àg •V»
7 2 C Q s S Q q S Q q q E f Q Q Q 0 2 0 0 2 2 2 ε σ = = = = d / d d ) ( ) ( ) ( 2 B 7¾´* `]"»ª* (ˆù S Q q S Q q q E f Q Q Q 0 2 0 0 = = = = d / d d ) ( ) ( ) ( 2 2 ( u&»ª* E E E E E E E E E

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
8 2 3 2 . 2 p pq P φ + = A q >0, σ >0 2 a × P a /2 q P 7 2 2 ) 2 / ( π 4 0 0 a a q - = ε
9 p - + = a a a a x x x q 2 0 2 2 0 2 4 / / d ) ( π d ε σ P Pq P φ + = 0 0 4 π 4 a a q - = P 0 P 2 ) 2 2 ) 2 / ( π 4 ( 0 0 a a q - q × P a /2 0 a x 0 p 2 2 ) 1 2 / 1 ( π 4 0 0 a a a q - - =

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
10 4 2 . X• ¶ª* d ¨“V ρ X •¶ª* d ρ ª* (2s X•¶ª*
11 2 2 0 x E 2 d 2 d - 0 2 ε ρ d 0 2 d - x E 0 =

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
12 2 2 2 P A 2 O, + = = ) ( (A) ) ( (P) (A) (P) d d d 0 0 l E l E l E φ 0 0 + = (A) (P) ˆ d ˆ x x x x ε ρ 2 0 0 0 2 x x x x - = = d 2 P 2 O ( 2 ) o A p x x y 2 d 2 d - x
13 2 2 P’ + = = ) ( ) ( ) ( ) ( ) ( ) ( d d d 0 0 A P A P l E l E l E φ x d d x x x d x E d d x x 0 0 2 0 2 0 2 0 0 2 8 2 ε ρ - = + = = d

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 03/25/2010 for the course PHYSICS 17 taught by Professor J.dong during the Spring '10 term at Tsinghua University.

### Page1 / 36

&auml;&sup1;&nbsp;&eacute;&cent;˜&egrave;&reg;&uml;&egrave;&reg;&ordm;&egrave;&macr;&frac34;5

This preview shows document pages 1 - 14. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online