10_pdfsam_math 54 differential equation solutions odd

# 10_pdfsam_math 54 differential equation solutions odd -...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Chapter 1 Therefore, the function y (x) deﬁned by exy + y = x − 1 is an implicit solution to the given diﬀerential equation. 13. Diﬀerentiating the equation sin y + xy − x3 = 2 implicitly with respect to x, we obtain y cos y + xy + y − 3x2 = 0 ⇒ (cos y + x)y = 3x2 − y ⇒ y= 3x2 − y . cos y + x Diﬀerentiating the second equation above again, we obtain (−y sin y + 1)y + (cos y + x)y = 6x − y ⇒ ⇒ (cos y + x)y = 6x − y + (y )2 sin y − y = 6x − 2y + (y )2 sin y 6x − 2y + (y )2 sin y . y= cos y + x 3x2 − y , cos y + x Multiplying the right-hand side of this last equation by y /y = 1 and using the fact that y= we get y 6x − 2y + (y )2 sin y y · 2 − y )/(cos y + x) cos y + x (3 x 2 3 6xy − 2(y ) + (y ) sin y . = 3x2 − y = Thus y is an implicit solution to the diﬀerential equation. 15. We diﬀerentiate φ(x) and substitute φ and φ into the diﬀerential equation for y and y . This yields φ(x) = Ce3x + 1 ⇒ dφ(x) = C e3x + 1 = 3Ce3x ; dx dφ − 3φ = 3Ce3x − 3 C e3x + 1 = (3C − 3C )e3x − 3 = −3, dx which holds for any constant C and any x on (−∞, ∞). Therefore, φ(x) = Ce3x + 1 is a one-parameter family of solutions to y − 3y = −3 on (−∞, ∞). Graphs of these functions for C = 0, ±0.5, ±1, and ±2 are sketched in Figure 1-A. 6 ...
View Full Document

## This note was uploaded on 03/29/2010 for the course MATH 54257 taught by Professor Hald,oh during the Spring '10 term at University of California, Berkeley.

Ask a homework question - tutors are online