104_pdfsam_math 54 differential equation solutions odd

# 104_pdfsam_math 54 differential equation solutions odd -...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Chapter 2 ⇒ F (x, y ) = − x−4 y 2 − 2x−2 = C. 2 We ﬁnd C by substituting the initial condition, y (1) = −2: − So, the solution is − x−4 y 2 − 2x−2 = −4 2 ⇒ y 2 + 4x2 = 8x4 y 2 = 8x4 − 4x2 = 4x2 2x2 − 1 √ y = −2x 2x2 − 1 , (1)−4 (−2)2 − 2(1)−2 = C 2 ⇒ C = −4 . ⇒ ⇒ where, taking the square root, we have chosen the negative sign because of the initial negative value for y . 37. In this equation with linear coeﬃcients we make a substitution x = u + h, y = v + k with h and k such that 2h − k = 0 h+k = 3 Therefore, (2u − v )du + (u + v )dv = 0 v − 2u (v/u) − 2 dv = = ⇒ du v+u (v/u) + 1 ⇒ z = v/u, v = uz, v = z + uz z−2 dz z2 + 2 dz = ⇒ u =− ⇒ z+u du z+1 du z+1 z+1 du ⇒ dz = − . z2 + 2 u Integration yields z+1 dz = − z2 + 2 100 du u ⇒ z dz + z2 + 2 dz =− z2 + 2 du u ⇒ k = 2h h + (2h) = 3 ⇒ k = 2, h = 1. ...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online