160_pdfsam_math 54 differential equation solutions odd

160_pdfsam_math 54 differential equation solutions odd -...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
Chapter 3 k 2 = hf ( x + h/ 2 ,y + k 1 / 2) = 0 . 25[2(1 + ( 1) / 2) 6] = 1 . 25 ; k 3 = hf ( x + h/ 2 ,y + k 2 / 2) = 0 . 25[2(1 + ( 1 . 25) / 2) 6] = 1 . 3125 ; k 4 = hf ( x + h, y + k 3 )=0 . 25[2(1 + ( 1 . 3125)) 6] = 1 . 65625 . Step 4 then yields x =0+0 . 25 = 0 . 25 , y =1+ 1 6 ( k 1 +2 k 2 +2 k 3 + k 4 )=1+ 1 6 ( 1 2 · 1 . 25 2 · 1 . 3125 1 . 65625) ≈− 0 . 29688 . Now we go back to Step 3 and recalculate k j ’s for new values of x and y . k 1 =0 . 25[2( 0 . 29688) 6] = 1 . 64844 ; k 2 =0 . 25[2( 0 . 29688 + ( 1 . 64844) / 2) 6] = 2 . 06055 ; k 3 =0 . 25[2( 0 . 29688 + ( 2 . 06055) / 2) 6] = 2 . 16358 ; k 4 =0 . 25[2( 0 . 29688 + ( 2 . 16358)) 6] = 2 . 73022 ; x =0 . 25 + 0 . 25 = 0 . 5 , y = 0 . 29688 + 1 6 ( 1 . 64844 2 · 2 . 06055 2 · 2 . 16358 2 . 73022) ≈− 2 . 43470 . We repeat the cycle two more times: k 1 =0 . 25[2( 2 . 43470) 6] = 2 . 71735 ; k 2 =0 . 25[2( 2 .
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 43470 + ( 2 . 71735) / 2) 6] = 3 . 39670 ; k 3 = 0 . 25[2( 2 . 43470 + ( 3 . 39670) / 2) 6] = 3 . 56652 ; k 4 = 0 . 25[2( 2 . 43470 + ( 3 . 56652)) 6] = 4 . 50060 ; x = 0 . 5 + 0 . 25 = 0 . 75 , y = 2 . 43470 + 1 6 ( 2 . 71735 2 3 . 39670 2 3 . 56652 4 . 50060) 5 . 95876 and k 1 = 0 . 25[2( 5 . 95876) 6] = 4 . 47938 ; k 2 = 0 . 25[2( 5 . 95876 + ( 4 . 47938) / 2) 6] = 5 . 59922 ; 156...
View Full Document

Ask a homework question - tutors are online