176_pdfsam_math 54 differential equation solutions odd

176_pdfsam_math 54 differential equation solutions odd -...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
Chapter 4 21. (a) With y ( t )= e rt , y 0 ( t )= re rt , the equation becomes are rt + be rt =( ar + b ) e rt =0 . Since the function e rt is never zero on ( −∞ , ), to satisfy the above equation we must have ar + b =0 . (b) Solving the characteristic equation, ar + b = 0, obtained in part (a), we get r = b/a .So y ( t )= e rt = e bt/a , and a general solution is given by y = ce bt/a ,where c is an arbitrary constant. 23. We form the characteristic equation, 5 r + 4 = 0, and Fnd its root r = 4 / 5. Therefore, y ( t )= ce 4 t/ 5 is a general solution to the given equation. 25. The characteristic equation, 6 r 13 = 0, has the root r =13 / 6. Therefore, a general solution is given by w ( t )= ce 13 t/ 6 . 27. Assuming that y 1 ( t )= e t cos 2 t and y 2 ( t )= e t sin 2 t are linearly dependent on (0 , 1), we conclude that, for some constant
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.
Ask a homework question - tutors are online