305_pdfsam_math 54 differential equation solutions odd

305_pdfsam_math 54 differential equation solutions odd -...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Exercises 5.4 figure indicates that (0, 0) is a stable critical point (center) whereas (1, 0) is a saddle point (unstable). 25. This system has two critical points, (0, 0) and (1, 0), which are solutions to the system y = 0, −x + x3 = 0. The direction field for this system is depicted in Figure B.37. From this figure we conclude that (a) the solution passing through the point (0.25, 0.25) flows around (0, 0) and thus is periodic; (b) for the solution (x(t), y (t)) passing through the point (2, 2), y (t) → ∞ as t → ∞, and so this solution is not periodic; (c) the solution passing through the critical point (1, 0) is a constant (equilibrium) solution and so is periodic. 27. The direction field for given system is shown in Figure B.38 in the answers of the text. From the starting point, (1, 1), following the direction arrows the solution flows down and to the left, crosses the x-axis, has a turning point in the fourth quadrant, and then does to the left and up toward the critical point (0, 0). Thus we predict that, as t → ∞, the solution (x(t), y (t)) approaches (0, 0). 29. (a) The phase plane equation for this system is 3y dy = . dx x It is separable. Separating variables and integrating, we get 3dx dy = y x ⇒ ln |y | = 3 ln |x| + C ⇒ y = cx3 . So, integral curves are cubic curves. Since in the right half-plane x = x > 0, in the left half-plane x < 0, the solutions flow to the right in the right half-plane and to the left 301 ...
View Full Document

This note was uploaded on 03/29/2010 for the course MATH 54257 taught by Professor Hald,oh during the Spring '10 term at University of California, Berkeley.

Ask a homework question - tutors are online