331_pdfsam_math 54 differential equation solutions odd

# 331_pdfsam_math 54 differential equation solutions odd -...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Exercises 5.7 Table 5–F: Poincar´ map for Problem 3. e n 0 1 2 3 4 5 6 7 8 9 10 xn 0 −0.010761 −0.029466 −0.060511 −0.110453 −0.189009 −0.310494 −0.495883 −0.775786 −1.194692 −1.817047 vn 10.998749 11.366815 11.870407 12.559384 13.501933 14.791299 16.554984 18.967326 22.266682 26.778923 32.949532 n 11 12 13 14 15 16 17 18 19 20 xn −2.735915 −4.085318 −6.057783 −8.929255 −13.09442 −19.11674 −27.79923 −40.28442 −58.19561 −83.83579 vn 41.387469 52.925111 68.700143 90.267442 119.75193 160.05736 215.15152 290.45581 393.37721 534.03491 In Table 5-G we have listed the ﬁrst 21 values of the Poincar´ map. e As n gets large, we see that xn ≈ −(1.092050) sin(1.328172) ≈ −1.060065 , vn ≈ (1.092050) cos(1.328172) ≈ 0.262366 . Hence, as n → ∞, the Poincar´ map approaches the point (−1.060065, 0.262366). e 7. Let A, φ and A∗ , φ∗ denote the values of constants A, φ in solution formula (2), corresponding ∗ to initial values (x0 , v0 ) and (x∗ , v0 ), respectively. 0 (i) From recursive formulas (3) we conclude that xn − F/(ω 2 − 1) = A sin(2πωn + φ), vn /ω = A cos(2πωn + φ), and so (A, 2πωn+φ) are polar coordinates of the point (vn /ω, xn −F/(ω 2 −1)) in vx-plane. ∗ Similarly, (A∗ , 2πωn + φ∗ ) represent polar coordinates of the point (vn /ω, x∗ − F/(ω 2 − 1)). n 327 ...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online