341_pdfsam_math 54 differential equation solutions odd

# 341_pdfsam_math 54 differential equation solutions odd -...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Review Problems that is, x1 = x2 , x2 = x3 , 1 5 + et x1 − 2x2 . x3 = 3 11. This system is equivalent to x =t−y −y , y =x −x . Next, we introduce, as additional unknowns, derivatives of x(t) and y (t): x1 (t) := x(t), x4 (t) := y (t), With new variables, the system becomes x = (x ) =: x3 = t − y − y =: t − x5 − x6 , y = (y ) =: x6 = x − x =: x2 − x3 . Also, we have four new equations connecting xj ’s: x1 = x =: x2 , x2 = (x ) = x =: x3 , x4 = y =: x5 , x5 = (y ) = y =: x6 . Therefore, the answer is x1 = x2 , x2 = x3 , x3 = t − x5 − x6 , 337 x2 (t) := x (t), x5 (t) := y (t), x3 (t) := x (t), x6 (t) := y (t). ...
View Full Document

## This note was uploaded on 03/29/2010 for the course MATH 54257 taught by Professor Hald,oh during the Spring '10 term at Berkeley.

Ask a homework question - tutors are online