387_pdfsam_math 54 differential equation solutions odd

# 387_pdfsam_math 54 differential equation solutions odd -...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Exercises 6.4 v2 (x) = = 1 x cos x(−2x3 ) dx = −16 8 x4 cos x dx 14 x sin x + 4x3 cos x − 12x2 sin x − 24x cos x + 24 sin x + c2 , 8 x cos x(−2x−1 ) 1 1 dx = v3 (x) = cos x dx = sin x + c3 , −16 8 8 where c1 , c2 , c3 are constants of integration, and we have used integration by parts to evaluate v1 (x) and v2 (x). Substituting these functions into (6.26) and simplifying yields yp (x) = − (x2 sin x + 2x cos x − 2 sin x) x + c1 x 4 x3 sin x (x4 sin x + 4x3 cos x − 12x2 sin x − 24x cos x + 24 sin x) x−1 + c2 x−1 + + c3 x3 + 8 8 = c1 x + c2 x−1 + c3 x3 − x sin x − 3 cos x + 3x−1 sin x . If we allow c1 , c2 , and c3 in the above formula to be arbitrary constants, we obtain a general solution to the original Cauchy-Euler equation. Thus, the answer is y (x) = c1 x + c2 x−1 + c3 x3 − x sin x − 3 cos x + 3x−1 sin x . 13. Since y1 Wk (x) = y1 . . . (n−2) y1 (n−1) y1 . . . y k −1 . . . y k −1 . . . ... ... (n−2) y k −1 (n−1) y k −1 0 yk+1 0 . . . 0 1 yk+1 . . . (n−2) yk+1 (n−1) yk+1 . . . yn . . . yn . . . ... ... (n−2) yn (n−1) yn , the k th column of this determinant consists of all zeros except the last entry, which is 1. Therefore, expanding Wk (x) by the cofactors in the k th column, we get Wk (x) = (0)C1,k + (0)C2,k + · · · + (0)Cn−1,n + (1)Cn,k y1 y1 = (1)(−1)n+k . . . y1 (n−2) . . . y k −1 . . . y k −1 . . . . . . y k −1 (n−2) yk+1 yk+1 . . . yk+1 (n−2) . . . yn . . . yn . . . . . . yn (n−2) 383 ...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online