This preview shows pages 1–3. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: Physics 3316, Spring 2010 Basics of Quantum Mechanics Problem Set 8 (Due in lecture, March 31, 2010) Required Readings : Griffiths Ch. 3 Key concepts: 1D potentials, Operator algebra 1 Resonant transmission U x=0 x=a E U(x) x Fig. 1: Potential barrier 1.1 Quantum Amplitudes Compute as a function of the incoming wave vector k , the quantum amplitudes ( r ( k ), t ( k ), respectively) for scattering of leftincident particles from the potential of Figure 1. Hints: 1. Your algebra will be simpler if you choose the solutions of the form 1 ( x ) = A 1 cos( kx ) + B 1 sin( kx ), 2 ( x ) = A 2 cos( k ( x a )) + B 2 sin( k ( x a )), 3 ( x ) = A 3 e ik ( x a ) , and then match the boundary conditions first at x = a and then at x = 0. Making similar guesses centering all parts of the wave function on the rightmost point in their interval, except for the rightmost part of the wave function which should be centered on the leftmost part of its interval, and then solving the matching conditions in right to left order will make the algebra in scattering problems. This approach is known as the transfer matrix approach and is a general method for rending all physical problems in onedimension trivial in many advanced fields of physics. 1 2 Hermitian operators 2 2. You should find t ( k ) = 1 cos( k a ) i 2 ( k k + k k ) sin( k a ) , for the transmission amplitude....
View
Full
Document
This note was uploaded on 03/29/2010 for the course PHYS 3318 taught by Professor Flanagan during the Spring '08 term at Cornell University (Engineering School).
 Spring '08
 FLANAGAN
 mechanics

Click to edit the document details