HW_02_S

# HW_02_S - Ph1a Solutions 2 Che-Fung Chan...

This preview shows pages 1–2. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Ph1a Solutions 2 Che-Fung Chan (cchan@caltech.edu), Fall 2004 Each homework problem is worth 5 points. Please disregard the point values listed on the problem itself. Use these instead. 2.1 Serway 7.9(6th)/7.13(5th) (5 points) Basic concept (2 points) The angle between two vectors vector A and vector B is given by = arccos vector A vector B vextenddouble vextenddouble vextenddouble vector A vextenddouble vextenddouble vextenddouble vextenddouble vextenddouble vextenddouble vector B vextenddouble vextenddouble vextenddouble 2.1.a (1 point) vector A = [3 , 2 , 0], vector B = [4 , 4 , 0] vector A vector B = 3 4 + ( 2) ( 4) + 0 = 20 vextenddouble vextenddouble vextenddouble vector A vextenddouble vextenddouble vextenddouble = radicalbig 3 2 + ( 2) 2 = 13 3 . 61 vextenddouble vextenddouble vextenddouble vector B vextenddouble vextenddouble vextenddouble = radicalbig 4 2 + ( 4) 2 = 4 2 5 . 66 = arccos parenleftbigg vector A vector B bardbl vector A bardblbardbl vector B bardbl parenrightbigg arccos(0 . 981) . 197 rad or 11 . 3 2.1.b (1 point) vector A = [ 2 , 4 , 0], vector B = [3 , 4 , 2] vector A vector B = 22, vextenddouble vextenddouble vextenddouble vector A vextenddouble vextenddouble vextenddouble = 2 5 4 . 47, vextenddouble vextenddouble vextenddouble vector B vextenddouble vextenddouble vextenddouble = 29 5 . 39 arccos( . 914) 2 . 72 rad or 156 2.1.c (1 point) vector A = [1 , 2 , 2], vector B = [0 , 3 , 4] vector A vector B = 2, vextenddouble vextenddouble vextenddouble vector A vextenddouble vextenddouble vextenddouble = 3, vextenddouble vextenddouble vextenddouble vector B vextenddouble vextenddouble vextenddouble = 5 arccos 0 . 133 1 . 44 rad or 82 . 3 2.2 Serway 11.6(6th)/11.14(5th) (5 points) The answer is no. This is because the cross product always yields a vector perpendicular to both of the input vectors. Formally, this can be expressed by the identity vector A parenleftBig...
View Full Document

## This note was uploaded on 03/30/2010 for the course PH 1a taught by Professor Goodstein during the Fall '07 term at Caltech.

### Page1 / 6

HW_02_S - Ph1a Solutions 2 Che-Fung Chan...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online