13th - x Problem  Evaluate if possible the following...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
Partial fractions, improper integrals David Pierce December  ,  Problem . Compute the following indefinite integrals. (a) Z x 3 - x x 2 - x - 6 d x (b) Z x x 2 + x + 1 d x (c) Z x ( x 2 + x + 1) 2 d x (d) Z x 4 - 3 x 3 + 4 x 2 - 3 x + 1 x 4 + 3 x 3 + 4 x 2 + 3 x + 1 d x (e) Z 4 x 3 + 9 x 2 + 8 x + 3 x 4 + 3 x 3 + 4 x 2 + 3 x + 1 d x Problem . Assuming deg f < 8 , analyse f ( x ) ( x 2 + 4 x - 5) 2 · ( x 2 + 4 x + 5) 2 as a sum of partial fractions. (No need to compute the numerators.) Problem . Evaluate the following definite integrals. (a) Z 32 0 d x 1 + x 1 / 5 (b) Z π / 2 0 d x 2 + sin
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: x Problem  . Evaluate, if possible, the following improper integrals. (a) Z 1-1 d x x 3 (b) Z ∞-∞ d x x 3 · e 1 /x 2 (c) Z ∞-∞ d x | x 3 | · e 1 /x 2 Problem  . Determine whether the following improper integrals converge. (a) Z ∞ sin( x 3 ) x + e x d x (b) Z ∞ 2 d x x 2-x-2 (c) Z ∞ 1 d x x 2-x-2...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online