LM4 - Metabolism overview Biological redox reactions...

Info iconThis preview shows pages 1–7. Sign up to view the full content.

View Full Document Right Arrow Icon
Metabolism -- overview Biological redox reactions Electron transport chains and oxidative phosphorylation Fueling processes: Fermentation vs. respiration (aerobic, anaerobic) Glycolytic pathways TCA and pentose phosphate cycles Phototrophy 1
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Metabolism Metabolism is the sum total of all the chemical reactions in the cell (Review p. 170-172 and 176-180) The energy required to run cellular metabolism is derived from redox reactions Energy from redox reactions is used to make high energy phosphate bonds (e.g., ATP) and to generate ion gradients (usually PMF) Fueling reactions include the metabolic pathways and processes that allow a cell to accumulate basic molecules needed for growth, including carbon based precursor metabolites, reducing power in the form of NADH and NADPH as well as the establishment of an energy reserve in the form of a proton motive force (PMF) and/or ATP 2
Background image of page 2
Overview of metabolic fueling pathways • These basic pathways  generate 12-13 precursor  metabolites, reducing power  (NADH/NADPH) and  cellular energy (ATP, PMF)  needed to make all cellular  components • Respiring micro-organisms  use green pathways (aerobic  or anaerobic) • Fermenting  micro- organisms use pink  pathways, but also some  reactions from pentose  phosphate and TCA (Krebs)  cycles 3
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Importance of Redox reactions E’  (standard reduction  potential) for CO 2  +4e- (+4H +  1/6 glc = -0.43 volts (missing  from Table) • As electrons move down the  rections shown, energy is  released and is used to make  ATP and/or a PMF • Movement of electrons from glc  to NAD + /NADP +  generates  reducing power  (NADH/NADPH) needed for  biosynthesis, photosynthesis as  well as providing an initial  electron donor for respiration 4
Background image of page 4
How electrons move (Fig. 9.5) Note placement of glucose, NADH, FADH 2 , Cytochromes, O 2 /H 2 O Max energy extracted related to maximal ∆E 0 ’ and aerobes extract maximal energy by using O 2 as the final e- acceptor Microbes use many different electron donors and acceptors, allowing energy extraction in many environments 5
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Glycolysis (Fig. 10.5) • Common pathway used by  most organisms in all  Domains • As glc  is oxidized, e - s are  transferred to NAD+,  liberating energy that is 
Background image of page 6
Image of page 7
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

Page1 / 25

LM4 - Metabolism overview Biological redox reactions...

This preview shows document pages 1 - 7. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online