HW10 - padilla(tp5647 – HW10 – cheng –(57455 1 This...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: padilla (tp5647) – HW10 – cheng – (57455) 1 This print-out should have 17 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering. 001 10.0 points Evaluate the integral I = integraldisplay 1 integraldisplay 2 1 (4 x + 2 x 2 y ) dydx . 1. I = 1 2. I = 3 2 3. I = 3 4. I = 5 2 5. I = 2 002 10.0 points Evaluate the iterated integral I = integraldisplay 4 1 braceleftBig integraldisplay 4 1 parenleftBig x y + y x parenrightBig dy bracerightBig dx . 1. I = 4 ln 15 2 2. I = 15ln 4 3. I = 15 2 ln 15 4. I = 15 2 ln 4 5. I = 4 ln15 6. I = 15ln 15 2 003 10.0 points Determine the value of the double integral I = integraldisplay integraldisplay A 3 xy 2 4 + x 2 dA over the rectangle A = braceleftBig ( x, y ) : 0 ≤ x ≤ 3 ,- 3 ≤ y ≤ 3 bracerightBig , integrating first with respect to y . 1. I = 27 2 ln parenleftBig 13 4 parenrightBig 2. I = 27 2 ln parenleftBig 4 13 parenrightBig 3. I = 27 2 ln parenleftBig 13 8 parenrightBig 4. I = 27 ln parenleftBig 4 13 parenrightBig 5. I = 27 ln parenleftBig 13 4 parenrightBig 6. I = 27 ln parenleftBig 13 8 parenrightBig 004 10.0 points Calculate the value of the double integral I = integraldisplay integraldisplay A x cos( x + y ) dxdy when A is the rectangle braceleftBig ( x, y ) : 0 ≤...
View Full Document

This note was uploaded on 03/31/2010 for the course M 408 K m 408 k taught by Professor G during the Spring '09 term at University of Texas-Tyler.

Page1 / 5

HW10 - padilla(tp5647 – HW10 – cheng –(57455 1 This...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online