HW10-solutions - padilla (tp5647) HW10 cheng (57455) 1 This...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: padilla (tp5647) HW10 cheng (57455) 1 This print-out should have 17 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. 001 10.0 points Evaluate the integral I = integraldisplay 1 integraldisplay 2 1 (4 x + 2 x 2 y ) dydx . 1. I = 1 2. I = 3 2 3. I = 3 correct 4. I = 5 2 5. I = 2 Explanation: The integral can be written in iterated form I = integraldisplay 1 parenleftBig integraldisplay 2 1 (4 x + 2 x 2 y ) dy parenrightBig dx . Now integraldisplay 2 1 (4 x + 2 x 2 y ) dy = bracketleftBig 4 xy + x 2 y 2 bracketrightBig 2 1 = 4 x + 3 x 2 . But then I = integraldisplay 1 (4 x + 3 x 2 ) dx = bracketleftBig 2 x 2 + x 3 bracketrightBig 1 . Consequently, I = 3 . keywords: definite integral, iterated integral, polynomial function, 002 10.0 points Evaluate the iterated integral I = integraldisplay 4 1 braceleftBig integraldisplay 4 1 parenleftBig x y + y x parenrightBig dy bracerightBig dx . 1. I = 4 ln 15 2 2. I = 15 ln4 correct 3. I = 15 2 ln15 4. I = 15 2 ln4 5. I = 4 ln15 6. I = 15 ln 15 2 Explanation: Integrating with respect to y keeping x fixed, we see that integraldisplay 4 1 parenleftbigg x y + y x parenrightbigg dy = bracketleftbigg x ln y + y 2 2 x bracketrightbigg 4 1 = (ln4) x + 15 2 parenleftbigg 1 x parenrightbigg . Thus I = integraldisplay 4 1 bracketleftbigg (ln4) x + 15 2 parenleftbigg 1 x parenrightbiggbracketrightbigg dx = bracketleftbiggparenleftbigg x 2 2 parenrightbigg ln4 + 15 2 ln x bracketrightbigg 4 1 . Consequently, I = 15ln4 . 003 10.0 points Determine the value of the double integral I = integraldisplay integraldisplay A 3 xy 2 4 + x 2 dA padilla (tp5647) HW10 cheng (57455) 2 over the rectangle A = braceleftBig ( x, y ) : 0 x 3 ,- 3 y 3 bracerightBig , integrating first with respect to y . 1. I = 27 2 ln parenleftBig 13 4 parenrightBig 2. I = 27 2 ln parenleftBig 4 13 parenrightBig 3. I = 27 2 ln parenleftBig 13 8 parenrightBig 4. I = 27 ln parenleftBig 4 13 parenrightBig 5. I = 27 ln parenleftBig 13 4 parenrightBig correct 6. I = 27 ln parenleftBig 13 8 parenrightBig Explanation: The double integral over the rectangle A can be represented as the iterated integral I = integraldisplay 3 parenleftbiggintegraldisplay 3- 3 3 xy 2 4 + x 2 dy parenrightbigg dx , integrating first with respect to y . Now after integration with respect to y with x fixed, we see that integraldisplay 3- 3 3 xy 2 4 + x 2 dy = bracketleftBig xy 3 4 + x 2 bracketrightBig 3- 3 = 54 x 4 + x 2 . But integraldisplay 3 54 x 4 + x 2 dx = bracketleftBig 27 ln(4 + x 2 ) bracketrightBig 3 . Consequently, I = 27 ln parenleftBig 13 4 parenrightBig . 004 10.0 points Calculate the value of the double integral I = integraldisplay integraldisplay A x cos( x + y ) dxdy when A is the rectangle braceleftBig ( x, y ) : 0 x 4 , y 4 bracerightBig ....
View Full Document

This note was uploaded on 03/31/2010 for the course M 408 K m 408 k taught by Professor G during the Spring '09 term at University of Texas-Tyler.

Page1 / 10

HW10-solutions - padilla (tp5647) HW10 cheng (57455) 1 This...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online