# Lect11 -   Slide 1 / 32...

This preview shows pages 1–9. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview:   Slide 1 / 32 Sparse Matrices and Optimized Parallel Implementations ________________________________________________ CS 594 Lecture Notes 03/25/2009 Stan Tomov Innovative Computing Laboratory Computer Science Department The University of Tennessee March 25, 2009   Slide 2 / 32 Topics       Projection in Scientific Computing             PDEs, Numerical  solution, Tools, etc.             Sparse matrices,  parallel implementations                     Iterative Methods     Slide 3 / 32 Outline • Part I – Discussion   • Part II – Sparse matrix computations • Part III – Reordering algorithms and parallelization   Slide 4 / 32 Part I Discussion   Slide 5 / 32 Orthogonalization • We can orthonormalize non-orthogonal basis.  How? Other approaches : QR using Householder transformation (as in LAPACK),  Cholesky, or/and SVD on normal equations ( as in homeworks 7 and 8 )  1 2 4 8 16 32 64 128 256 512 0.5 1 1.5 2 2.5 MGS QR_it_svd QR_it_Chol/svd Vector size x 1,000 Gflop/s 1 2 4 8 16 32 64 128 256 512 20 40 60 80 100 120 140 QR_it_svd QR_it_Chol/svd Vector size x 1,000 Gflop/s Hybrid CPU-GPU (NVIDIA Quadro FX 5600)            computation as in Homework #9                          CPU computation AMD Opteron (tm), Processor 265 (1.8 Ghz, 1 GB cache) 128 vectors   Slide 6 / 32 What if the basis is not orthonormal? • If we do not want to orthonormalize:       u      P u   =  c 1  x 1  + c 2  x 2  +  . . .  + c m  x m           (u , x 1 ) = c 1  (x 1  , x 1 )+ c 2  (x 2  , x 1 )+  . . .  + c m  (x m  , x 1 )         .  .  .         (u, x m ) = c 1  (x 1  , x m )+ c 2  (x 2  , x m )+  . . .  + c m  (x m  , x m ) •  These are   the so called  Petrov-Galerkin conditions •  We saw examples of their use in     * optimization, and    * PDE discretization, e.g. FEM / 'Multiply' by x 1 , ..., x m  to get   Slide 7 / 32 What if the basis is not orthonormal? • If we do not want to orthonormalize, e.g.  in FEM       u      P u   =  c 1    1  + c 2    2  +  . . .  + c 7    7           a( c 1    1  + c 2    2  +  . . .  + c 7    7  ,   i ) = F(    i )   for i = 1, ... , 7             / 'Multiply' by   1 , ...,   7  to get    a 7x7 system (Image taken from http://www.urel.feec.vutbr.cz/~raida)   Two examples of basis functions   i    The more    i  overlap, the denser the     resulting matrix   Spectral element methods  (high-order FEM)      Slide 8 / 32 Stencil Computations • K. Datta, S. Kamil, S. Williams, L. Oliker, J. Shaft, K. Yelick, K....
View Full Document

{[ snackBarMessage ]}

### Page1 / 32

Lect11 -   Slide 1 / 32...

This preview shows document pages 1 - 9. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online