EE_564_F09_HW8_Solutions

EE_564_F09_HW8_Solutions - Copyright 2009 University of...

Info iconThis preview shows pages 1–7. Sign up to view the full content.

View Full Document Right Arrow Icon
Copyright 2009 University of Southern California and its Instructors
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Copyright 2009 University of Southern California and its Instructors
Background image of page 2
Problem 2 clear,clc h = [1 0.5 -0.25]; %############ T = 2e-6; N = 16; W = 1/T; H1 = fft(h,N); subplot(3,1,1), stem([0:(N-1)]./N.*W,abs(H1).^2) xlabel( 'W' ),ylabel( '|H[k]|^2' ),title( 'N=16 , T=2e-6' ) %############ T = 2e-6; N = 128; W = 1/T; H1 = fft(h,N); subplot(3,1,2), stem([0:(N-1)]./N.*W,abs(H1).^2) xlabel( 'W' ),ylabel( '|H[k]|^2' ),title( 'N=128 , T=2e-6' ) %############ T = 2e-6; W = 1/T; w = 0:W/1000:W; H = 0*w; for k = 1:length(w) H(k) = h*[exp(-j*2*pi./W*[0:(length(h)-1)]*w(k))]'; end subplot(3,1,3), plot(0:W/1000:W,abs(H).^2) xlabel( 'W' ),ylabel( '|H[k]|^2' ),,title( 'Continuous Time Fourier Transform , T=2e-6' )
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 x 10 5 0 0.5 1 1.5 2 W |H[k]| 2 N=16 , T=2e-6 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 x 10 5 0 0.5 1 1.5 2 W N=128 , T=2e-6 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 x 10 5 0 0.5 1 1.5 2 W Continuous Time Fourier Transform , T=2e-6
Background image of page 4
Copyright 2009 University of Southern California and its Instructors
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
Background image of page 7
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Copyright 2009 University of Southern California and its Instructors Problem 3 h = [1 0.5 -0.25]; H2 = abs(fft(h,8)).^2; SNRdB = [10 15 20] SNR = 10.^(SNRdB./10); %###### Part A for i = 1:3 SER1(i) = 1/8*(sum((1-normcdf(sqrt(2*SNR(i))*H2')))); end semilogy(SNRdB,SER1, '-o' ), hold on %###### Part B for i = 1:3 SER2(i) = 1/8*(sum((1-normcdf(sqrt(SNR(i))*H2')))); end semilogy(SNRdB,SER2, '--s' ), hold on %###### Part C H2 = H2([2,3,7,8]); for i = 1:3 SER3(i) = 1/4*(sum((1-normcdf(4*sqrt(SNR(i))*H2')))); end semilogy(SNRdB,SER3, '-.v' ), hold on xlabel( 'SNR (dB)' ),ylabel( 'SER' ) legend( 'BPSK' , 'QPSK' , 'Adaptive Modulation Acheives Error Free at SNR>10dB' ) 10 11 12 13 14 15 16 17 18 19 20 10-1.6 10-1.5 10-1.4 10-1.3 SNR (dB) SER BPSK QPSK Adaptive Modulation Acheives Error Free at SNR>10dB...
View Full Document

Page1 / 7

EE_564_F09_HW8_Solutions - Copyright 2009 University of...

This preview shows document pages 1 - 7. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online