EE_564_F09_HW8_Solutions

# EE_564_F09_HW8_Solutions - Copyright 2009 University of...

This preview shows pages 1–7. Sign up to view the full content.

Copyright 2009 University of Southern California and its Instructors

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Copyright 2009 University of Southern California and its Instructors
Problem 2 clear,clc h = [1 0.5 -0.25]; %############ T = 2e-6; N = 16; W = 1/T; H1 = fft(h,N); subplot(3,1,1), stem([0:(N-1)]./N.*W,abs(H1).^2) xlabel( 'W' ),ylabel( '|H[k]|^2' ),title( 'N=16 , T=2e-6' ) %############ T = 2e-6; N = 128; W = 1/T; H1 = fft(h,N); subplot(3,1,2), stem([0:(N-1)]./N.*W,abs(H1).^2) xlabel( 'W' ),ylabel( '|H[k]|^2' ),title( 'N=128 , T=2e-6' ) %############ T = 2e-6; W = 1/T; w = 0:W/1000:W; H = 0*w; for k = 1:length(w) H(k) = h*[exp(-j*2*pi./W*[0:(length(h)-1)]*w(k))]'; end subplot(3,1,3), plot(0:W/1000:W,abs(H).^2) xlabel( 'W' ),ylabel( '|H[k]|^2' ),,title( 'Continuous Time Fourier Transform , T=2e-6' )

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 x 10 5 0 0.5 1 1.5 2 W |H[k]| 2 N=16 , T=2e-6 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 x 10 5 0 0.5 1 1.5 2 W N=128 , T=2e-6 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 x 10 5 0 0.5 1 1.5 2 W Continuous Time Fourier Transform , T=2e-6
Copyright 2009 University of Southern California and its Instructors

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Copyright 2009 University of Southern California and its Instructors Problem 3 h = [1 0.5 -0.25]; H2 = abs(fft(h,8)).^2; SNRdB = [10 15 20] SNR = 10.^(SNRdB./10); %###### Part A for i = 1:3 SER1(i) = 1/8*(sum((1-normcdf(sqrt(2*SNR(i))*H2')))); end semilogy(SNRdB,SER1, '-o' ), hold on %###### Part B for i = 1:3 SER2(i) = 1/8*(sum((1-normcdf(sqrt(SNR(i))*H2')))); end semilogy(SNRdB,SER2, '--s' ), hold on %###### Part C H2 = H2([2,3,7,8]); for i = 1:3 SER3(i) = 1/4*(sum((1-normcdf(4*sqrt(SNR(i))*H2')))); end semilogy(SNRdB,SER3, '-.v' ), hold on xlabel( 'SNR (dB)' ),ylabel( 'SER' ) legend( 'BPSK' , 'QPSK' , 'Adaptive Modulation Acheives Error Free at SNR>10dB' ) 10 11 12 13 14 15 16 17 18 19 20 10-1.6 10-1.5 10-1.4 10-1.3 SNR (dB) SER BPSK QPSK Adaptive Modulation Acheives Error Free at SNR>10dB...
View Full Document

## This note was uploaded on 04/03/2010 for the course EE 564 at USC.

### Page1 / 7

EE_564_F09_HW8_Solutions - Copyright 2009 University of...

This preview shows document pages 1 - 7. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online