{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

20095ee141_1_EE141_hw6_sol

20095ee141_1_EE141_hw6_sol - EE141 Principles of Feedback...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
EE141 Principles of Feedback Control (Fall 2009) Solutions to Homework 6 Problem 9.2 (a) The equilibrium pairs for u = 1 is di dt = - i + v = 0 dv dt = - i + g (1 - v ) = - i + (1 - v )(1 - v - 1)(1 - v - 4) = 0 which gives v = - 1 ± 3 Thus the other two equilibrium pairs are v 2 = i 2 = 0 . 732 and v 3 = i 3 = - 2 . 732. (b) x = i v = x 1 x 2 ˙ x = ˙ i ˙ v = - i + v - i + g ( u - v ) = - x 1 + x 2 - x 1 + g ( u - x 2 ) = f 1 ( x, u ) f 2 ( x, u ) F = ∂f 1 ∂x 1 ∂f 1 ∂x 2 ∂f 2 ∂x 1 ∂f 2 ∂x 2 x 1 = x 2 =0 ,u =1 = - 1 1 - 1 3 G = ∂f 1 ∂u ∂f 2 ∂u x 1 = x 2 =0 ,u =1 = 0 - 3 Thus the linearized model here is ˙ x = - 1 1 - 1 3 x + 0 - 3 u (c) (1) For v 2 = i 2 = 0 . 732 , u = 1 F = ∂f 1 ∂x 1 ∂f 1 ∂x 2 ∂f 2 ∂x 1 ∂f 2 ∂x 2 x 1 = x 2 =0 . 732 ,u =1 = - 1 1 - 1 - 1 . 54 G = ∂f 1 ∂u ∂f 2 ∂u x 1 = x 2 =0 . 732 ,u =1 = 0 1 . 54 1
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Thus the linearized model here is ˙ x = - 1 1 - 1 - 1 . 54 x + 0 1 . 54 u (2) For v 2 = i 2 = - 2 . 732 , u = 1 F = ∂f 1 ∂x 1 ∂f 1 ∂x 2 ∂f 2 ∂x 1 ∂f 2 ∂x 2 x 1 = x 2 = - 2 . 732 ,u =1 = - 1 1 - 1 - 8 . 46 G = ∂f 1 ∂u ∂f 2 ∂u x 1 = x 2 = - 2 . 732 ,u =1 = 0 8 . 46 Thus the linearized model here is ˙ x = - 1 1 - 1 - 8 . 46 x + 0 - 8 . 46 u Problem 9.4 (a) ˙ x = - x 2 e - 1 x + sin 0 = 0 x = 0 Note: the x = 0 here is actually x = 0 + . (b) Let ˙ x = - x 2
Background image of page 2
Background image of page 3
This is the end of the preview. Sign up to access the rest of the document.
  • Fall '07
  • Balakrishnan
  • Tier One, Scaled Composites, Scaled Composites White Knight, 2004 in spaceflight, Sub-orbital spaceflight, linearized model

{[ snackBarMessage ]}