2d-transformations_exercise - 2D TRANSFORMATIONS Exercises...

Info iconThis preview shows pages 1–7. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 2D TRANSFORMATIONS Exercises Solved Problems #01 Write the homogenous matrix representation for a transformation that rotate an object point about the origin. - = 1 cos sin sin cos R Solved Problems #02 Using 2D Homogenous Coordinate, Find the matrix that represents rotation of an object by 30 about the origin. What are the new coordinate of the point, P(2, -4) after the rotation? Solved Problems #02-a - = - = 1 2 3 2 1 2 1 2 3 1 30 cos 30 sin 30 sin 30 cos 30 R Solved Problems #02-b - - = = 1 4 2 1 30 cos 30 sin 30 sin 30 cos 1 ' ' ' ) , ( 30 y x P R P y x Solved Problems #02-b ) 3 2 1 , 2 3 ( ' 1 3 2 1 2 3 1 4 2 1 2 3 2 1 2 1 2 3 1 ' '- + =...
View Full Document

This note was uploaded on 04/05/2010 for the course COMPUTER S 876 taught by Professor Ch during the Spring '10 term at Amirkabir University of Technology.

Page1 / 15

2d-transformations_exercise - 2D TRANSFORMATIONS Exercises...

This preview shows document pages 1 - 7. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online