This preview shows page 1. Sign up to view the full content.
Unformatted text preview: k there exist k consecutive integers each of which is divisible by a square. Exercise 5. 2.3.36: Find the last two decimal digits of 2 1000 and 3 1000 . Exercise 6. 2.6.2: Solve the congruence x 5 + x 4 + 1 0(3 4 ) . Exercise 7. 2.6.11: Let p be a prime and f ( x 1 , x 2 , . . . , x n ) be an integer polynomial in n variables, and suppose that f ( a 1 , . . . , a n ) 0( p ) and that the partial derivative f x i ( a 1 , . . . , a n ) 0( p ) . Show that the congruence f ( x 1 , . . . , x n ) 0( p j ) has a solution for each j ....
View
Full
Document
This note was uploaded on 04/05/2010 for the course CS 150 taught by Professor Humphreys,g during the Spring '08 term at UVA.
 Spring '08
 Humphreys,G

Click to edit the document details