math119lecnotes-set007

math119lecnotes-set007 - §s~7 - W15. 5'3” 98’ coqu ml:...

Info iconThis preview shows pages 1–6. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: §s~7 - W15. 5'3” 98’ coqu ml: A0 "LE «Moi swing]. l Euler +0 +he. Tegcue , SMCQ m! = %('n.-I)('n—2)~- 2-! we We ' n :; 8w(11)+ anew—I) + Ham.) :2 g; where, -F(3<)=Q/mcx). PM: HM‘s {at Emlco Eulu‘s §orm(5130) m (39);: HUL {allowt'xma 1 I2. IQ'VL(’*1.}):{'6WC¥)AX + i—(l’mmbo +—'—(—n'——~I) +6 ) 53 Pants '1». = (Kthhx) +JiP/WCW) +T‘i—nv-T‘: +€ ) Neel: fake. Hm. expoum’ciofl, 01C lad-k S‘des (ream: 99%;“ )i _LL. 44.3 = Jew”. 2‘“ - QHWW. (Emir ‘2 +e) —J—-+iL € (532) zi.m , em" '1 J", an M cw. WFQL Eoumd. far {he emor e is by (5731)] «Wok wares 4,..L. \ lg: I20 9:. 000 M cougatimkaj I 6T5, ' (iii-90.017 = 132.54 - Tm (9,32) 13W: (chopping {143, Mar ($.35) ’ng 2:, 2.54/‘F(%Y Let us chew how good. 44an is: ’n=S } S.I x 2.54 EOE); I? 11°). 590 (mark: 5920) lo ,WS‘O 10-, Q: 3 (m: :o!=3 628 900) If «:1; 3 Is! z254f1?<%) 2 1‘3l77438’6ex10‘2 (Maw: ls.’ = 1.5mm 62x10”) Nd? (Md. out all] Iwafl W CW3 aJooo-e Hue. W moxie Ls iexs Mm 1%, , Even so , one COM do muck bake/r Mm (533) 3, 53 Mada-Hm? 6 More For wax/mph) 5‘39 Mi‘Hx a Mable Move W one Cam Show Hm}: _L._,__l__+9(..l.)> ’2'” 360145 ’15 5‘34 E: 2R“. 6 ( > "L (a) 0440!. {or neon Gawm We fie’c Yew ‘ ‘ l (539 3 (n! x M (“an S’cn‘lma 37:23qu o Nofice, 'HILQJ; Hm}. dLfi’eM/Ma [9933M {law-Ila M (5.33) 19 Hm replawwmt 01c 2.54 by Eliza's: ,aL Hwy dim;me rwk‘uok ,mel-Lszfless , is Med—amt W I 441%, W Mums Q5: 14,. For [nsEa/nca/ mzlo H9.l =5: Mam-l0 (15-50 :2 3 57g 695 (535) I IS'Z m=mo 3 100. 8 0.3324847 x10 lSE (5'35) (Wt 0.9332921): (o ) Vang 390%! E QW‘ You wiu, wad: Shrlc‘mals Formula Em. {dam comses *2? ECE 3w (Mama am SfdierLcs) , or SYDE 51:3 m 214 (Ma)- .% g 5.9 _Inkrooluo’cton 1L0 H12 2 vaamg‘Colm , ;. We, kn»: aQTechfi «Qua/moi a {w Was abouk cuffexm afimkms ) out, iw ‘Hnis 36017me M Mroduce a, W aifi solviw? ¥hm.<We stress axe W "WHOM" because. W3 is Jude Hue befimm‘mg o4? Hui $9913 ,- Hw, W Skbvy W Iva-1U. [2.me 30m SjéMs mot, Straws Comse QEv—W Q/YL We SQW {70k}:o={7<°,xn..}, we comic!“- +he {oLLow'mg Cremation : 47m M3 mpsz vanlaJcle. 2 dud. ’WD-e. «HM. Seclmce, {xkrc’ w, coefficients o‘c 44x5 Sagas ° XI?) =ggolg‘; =X°+ iii-13+"- I; W9 3m; convenaemces ,Hwn. {—he mw’ be-xli) WM 929W: for 0% HLe Vahes 01C 2- wi-l‘kbn, 4148 Carla HERE, wlww. 12 is Hne moths o4 Convevaefi-CL. We “mm 80.3 M X(%) \‘5 %fl9§om__o§. {xh}:) W Z{Kk}:°=X—(2-) zf 00 A Exmlale. Ft‘md. ‘Hne. 2-+raMs{ovm o; Hue . 0° 0 SOP“. % = 15'... =J— .2— .i. --- exc) £32k a+_ZL-\-_P+ This is jusl- *H‘uz. Binomiai SWS (HEM, (p.453) ‘2 K:-.L . A O'HWA‘ emeles : AHEM, #410 ~2g1, E,“ 3“},2) 3.3‘ A5": . The 2—%rams§orm has Mama impoficwi: firopenkfies, but we cannot: Shag Hzem here .we 5W mm” may er gamma (wanton/{mg ones : (a) 2{ Hugh} _= oz Z{xk} +52%} = oiXCi)+F:Y(3-') when, ot,@ om anJo‘LHaAg Conng aud +he oaner Swab have He obvious memiwa. Tm; {prepay is cam Linearibj pg; Hne 2-??amgom. (b) Gwen {yarn Cons'uoux 'Hte new Seqmcdgb} MW 20d» W 0‘}; HQ, $341M :1/5 AW {fem HM). originafl 311:, L23 Hue, (3)9wa Ia: xw‘o , koCk-ft‘xedt Yak/Zia} = égfik} = éoXé)- (see. AHEH,p.225-) This “prgflry Is called Delaying ,flor reasm Haul: weshm See, ‘m «We Made Sec’cion. _ 139.?ng 1s mum. Advancing. (d) We cw), Z-TXQJ = {KL}: Mae 'Iwmse Transfom M mu. Me MToble. 04. 2_Tmsf9vms *0 {End u?- 0 We. Yxow $how b3 example how Hm %—’crms§erm helps golfing difiexewoe equations. A EKG/“$13; 301w, Hze, +okLowing lMLOVrdu QWLOH Sage/ob Jco We give/v» oonolHLmS ; 7C ~5xk+‘ =0 3 Ker—'10 ) XI: 2- Jrhe equatbm kw. Solu’c‘um, we apply Mme 2—+fams{.owu Jco { Klan — 5 X'K'“ +6 xk} = 0 ) \’*5P€'V‘”5 (a) )nmemua ngxhfl} -5‘Z{xk+‘} + GZ{Xk-} :0 ) WP-(C)\W1Kko=2 2%: X‘W ice—.1 21 __ (éoxwil'h —— 5[2X(%) xu {"3 4- 57(5) == 0 ) EEK-La.) _ 7- ,792 —. 5 2X02) .% + EX(%) :2 o ) 14:. T 116- ' 2 afp‘y I .C. or 51 and Solve , . 100* 302) XE) : L 2% a “5% + £9 5 W?“ -P‘6\.ohons (fevEem: MEHADJOB) :.... =2 ‘3 __2 2' ' a»; 2—2 Now we Hae $201062 chorm : __ —‘ ” a- -2'Z [fi]—lZ La] FM“ = a 3"» 2 2“ Tame 0} ‘We/Lse hangs: Nobe We); Huz. Table {M austimu La 12-3. 3.5 L» AME” )19'129- mem\ A ...
View Full Document

This note was uploaded on 04/05/2010 for the course MATH 119 taught by Professor Harmsworth during the Spring '08 term at Waterloo.

Page1 / 6

math119lecnotes-set007 - §s~7 - W15. 5'3” 98’ coqu ml:...

This preview shows document pages 1 - 6. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online