exam1_topics and useful diagrams

Intermediate Microeconomics: A Modern Approach, Seventh Edition

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Topic Review: 14.04 Midterm I. Consumer Thoery: 75-85% of Test A. Construction of Utility Functions 1. Requirements for the construction of a utility function 2. Requirements for budget exhaustion 3. Proving Convexity and Monotinicity of indifference curves (Two Good Case) 4. Ordinal vs Cardinal Preferences 5. Requirements for vNM utility functions (Expected Utility) B. Utility Maximization 1. Utility Maximization/Indirect Utility Functions 2. Expenditure Minimization 3. Marshallian/Hicksian Demand Functions 4. Envelope Theorem (Shephard’s Lemma) 5. Kuhn-Tucker Optimization (At least know how to formally solve quasi-linear, leontieff, linear, Cobb Douglas. Problems will be similar, but not exactly the same as these) 6. Marginal Rate of Substitution – testing boundary conditions 7. Intertemporal Choice C. Manipulations of Utility Functions 1. Properties of the Indirect Utility/Expenditure Functions 2. Finding the expenditure function from indirect utility 3. Finding Hicksian/Marshallian Demand from indirect utility/expenditure 4. Recovering one Hicksian Demand from another 5. Moving from Marshallian Demand -> Hicksian Demand 6. Constructing Utility functions from Indirect Utility 7. Money Metric Utility Functions 8. Properties of the Slutsky Matrix, properties of the symmetric matrix (Second derivates of expenditure function) D. Choice 1. Income and Substitution Effects 2. Construction of the Slusky Matrix (With and Without Endowments) 3. Inferior Goods, Giffen Goods 4. WARP, GARP. 5. Recovering preferences from choices E. Aggregation 1. Construction of Demand Curves 2. Homothetic utility Functions (Form of expenditure function, properties of slutsky matrix) 3. Aggregation across goods 4. Gorman Form F. Uncertainty 1. Properties necessary for vNM utility functions 2. Affine Transformations 3. Risk Aversion, Risk Neutral, Risk Loving 4. Absolute, Relative risk aversion 5. Certainty Equivalent 6. Risk Premium 7. Simple Insurance II. Production 15-25% of test A. Technology 1. Isoquants, Technical Rate of Substitution 2. CRTS, DRTS, IRTS 3. Production possibility frontier 4. Short Run/Long Run Constraints B. Profit Maximization 1. Setting up and solving profit maximization problems 2. Testing for firm shut down 3. WAPM 4. Cost Minimization <-> Profit Maximization 5. Factor Demands 6. Supply Function C. Cost Minimization 1. Techniques for minimizing costs 2. Multiple Plant Problems 3. Marginal Costs 4. Sunk Costs 5. Cost function, Conditional Factor Demands Useful Diagrams: Consumer Thoery: Monotonic Transformations Matrix Symmetry Utility Utility Function (Ordinal) Utility Maximization ⎡ ∂e( p, u ) ⎢ ∂p ∂p ⎢ 11 ⎢ ∂e( p, u ) ⎢ ∂p ∂p ⎣ 21 ⎡ ∂e( p, u ) ⎢ ∂p ∂p ⎢ 11 ⎢ ∂e( p, u ) ⎢ ∂p ∂p ⎣ 21 Expenditure Minimization V ( p, m) = max x U ( x) x ⋅ p = m ∂e( p, u ) ⎤ ∂p1∂p2 ⎥ ⎥ is Neg SemiDef : ∂e( p, u ) ⎥ ∂p2 ∂p2 ⎥ ⎦ ∂e( p, u ) ⎤ ⎡ ∂h1 ( p, u ) ∂p1∂p2 ⎥ ⎢ ∂p1 ⎥=⎢ ∂e( p, u ) ⎥ ⎢ ∂h1 ( p, u ) ∂p2 ∂p2 ⎥ ⎢ ∂p2 ⎦⎣ ∂h1 ( p, u ) ⎤ ∂p2 ⎥ ⎥ → ∂h1 ( p, u ) ≤ 0, ∂h1 ( p, u ) = ∂h1 ( p, u ) ∂h2 ( p, u ) ⎥ ∂p1 ∂p2 ∂p2 ⎥ ∂p2 ⎦ e( p, u ) = min x ⋅ p st U ( x) > u Marshallian Demand Function ∂v( p, m) ∂pi xi ( p, m) = ∂v( p, m) ∂m V ( p, m) : Homogenous of Degree 0, Continuous, non increasing in P Hicksian Demand Function h i ( p, u ) = SlutskyMatrix ∂hi ( p, u ) ∂xi ( p, e( p, m) xi ( p, e( p, u )) ∂e( p, u ) = + ∂p j ∂p j ∂e( p, u ) ∂pi ∂e( p, u ) ∂pi e( p, u ) : Homogeneous of degree 1 in p Continuous, nondecreasing in p so ∂xi ( p, m) ∂hi ( p, u ) ∂xi ( p, m) = − xi ∂p j ∂p j ∂m h i ( p, u ) :Homogeneous of degree 0 in p Recoverability xi ( p, e( p, u )) = hi ( p, u ) = e( p, v( p, m)) = m v( p, e( p, u )) = u ∂e( p , u ) ∂pi so ∂e( p, u ) = xi ( p, e( p, u )) → e( p, u ) + c(u ) ∂pi xi ( p, e( p, u )) = hi ( p, u ) hi ( p, v( p, m)) = xi ( p, m) But u is not observable, so we have to use what is observable: v(q,m) ∂e( p, v(q,m)) = xi ( p, e( p, v(q,m))) → μ ( p, q, m) ∂pi μ ( q, q , m ) = m Producer Thoery: Technology Technology Y=f(x) WAPM Profit Maximization Profit Function π ( p, w) = max x pf ( x) − wx Input Demand Function x( p, w) Supply Function y ( p, w) Integrability Cost Minimization Cost Function c( w, y ) = min x wx SubjectTo : f ( x) = y Conditional Demand Function x( w, y ) Solve max y py − c( w, y ) We can do something similar to WAPM here. Notice that for a firm to profit maximize π (p,w)= max y py − c( w, y ). Since for any p,w we know y and π (p,w), we can reconstruct c(w,y) from the points. ...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online