mt2sols - Math 250A, Fall 2004 Last Midterm ExamNovember 4,...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Math 250A, Fall 2004 Last Midterm ExamNovember 4, 2004 Please put away all books, calculators, electronic games, cell phones, pagers, .mp3 players, PDAs, and other electronic devices. You may refer to a single 2-sided sheet of notes. Explain your answers in full English sentences as is customary and appropriate. Your paper is your ambassador when it is graded. All rings are rings with identity! 1. Suppose that I and J are ideals in a commutative ring R such that I + J = R . Establish the surjectivity of the natural map R R/I R/J, r 7 ( r mod I, r mod J ) . (Dont just name a theorem; write down a complete proof.) This is the Chinese Remainder Theorem, but we are asked to supply a proof. If I + J = R , then 1 is an element of I + J , so that there are x I , y J with x + y = 1. Given a, b R , we can write down r := ay + bx and see that r has the same image as a mod I and the same image as b mod J . If I + J = R , as above, show that I n + J m = R whenever n and m are positive integers. We can take m = n since I n + J m contains I n + J n if n m . Suppose that 1 = x + y as above. Then 1 = ( x + y ) 2 n . If you expand out ( x + y ) 2 n by the binomial theorem, youll see that each term is divisible either by x n or by y n . Hence ( x + y ) 2 n lies in I n + J n . 2. Let k be a field, and let V be the k-vector space consisting of ( a 1 , a 2 , . . . ) with a i k and a i non- zero only for a finite set of i . Let R = End k V be the ring of linear transformations V...
View Full Document

This note was uploaded on 04/06/2010 for the course MATH various taught by Professor Tao/analysis during the Spring '10 term at UCLA.

Page1 / 2

mt2sols - Math 250A, Fall 2004 Last Midterm ExamNovember 4,...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online