Batzer and Deininger 2002 Nature Reviews Genetics

Mol cell biol 16 37563764 1996 ohshima k okada n

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: tics. Bioessays 22, 148–160 (2000). Ohshima, K., Hamada, M., Terai, Y. & Okada, N. The 3′ ends of tRNA-derived short interspersed repetitive elements are derived from the 3′ ends of long interspersed repetitive elements. Mol. Cell. Biol. 16, 3756–3764 (1996). Ohshima, K. & Okada, N. Generality of the tRNA origin of short interspersed repetitive elements (SINEs). Characterization of three different tRNA-derived retroposons in the octopus. J. Mol. Biol. 243, 25–37 (1994). Okada, N. & Hamada, M. The 3′ ends of tRNA-derived SINEs originated from the 3′ ends of LINEs: a new example from the bovine genome. J. Mol. Evol. 44, S52–S56 (1997). Okada, N. & Ohshima, K. A model for the mechanism of initial generation of short interspersed elements (SINEs). J. Mol. Evol. 37, 167–170 (1993). Rogers, J. Retroposons defined. Nature 301, 460 (1983). Feng, Q., Moran, J. V., Kazazian, H. H. Jr & Boeke, J. D. Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87, 905–916 (1996). Moran, J. V. et al. High frequency retrotransposition in cultured mammalian cells. Cell 87, 917–927 (1996). This manuscript presents the development and characterization of an in vitro assay to measure retrotransposition in mammalian cells. Luan, D. D., Korman, M. H., Jakubczak, J. L. & Eickbush, T. H. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72, 595–605 (1993). The authors provide strong experimental evidence for 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. the role of target-primed reverse transcription in retroelement mobilization. Shen, M. R., Brosius, J. & Deininger, P. L. BC1 RNA, the transcript from a master gene for ID element amplification, is able to prime its own reverse transcription. Nucleic Acids Res. 25, 1641–1648 (1997). Mathias, S. L., Scott, A. F., Kazazian, H. H. Jr, Boeke, J. D. & Gabriel, A. Reverse transcriptase encoded by a human transposable element. Science 254, 1808–1810 (1991). Deragon, J. M., Sinnett, D. & Labuda, D. Reverse transcriptase activity from human embryonal carcinoma cells NTera2D1. EMBO J. 9, 3363–3368 (1990). Jurka, J. Sequence patterns indicate an enzymatic involvement in integration of mammalian retroposons. Proc. Natl Acad. Sci. USA 94, 1872–1877 (1997). This paper provides the first computational evidence for the involvement of enzymatic activity in the integration of retroposons in the genome. Boeke, J. D. LINEs and Alus — the polyA connection. Nature Genet. 16, 6–7 (1997). Fanning, T. G. & Singer, M. F. LINE-1: a mammalian transposable element. Biochim. Biophys. Acta 910, 203–212 (1987). Skowronski, J. & Singer, M. F. The abundant LINE-1 family of repeated DNA sequences in mammals: genes and pseudogenes. Cold Spring Harb. Symp. Quant. Biol. 51, 457–464 (1986). Deininger, P. L., Batzer, M. A., Hutchison, C. A. & Edgell, M. H. Master genes in mammalian repetitive DNA amplification. Trends Genet. 8, 307–311 (1992). A comparison of amplification models for mobile elements that are proposed as a result of the initial discovery of mobile-element subfamily structure. Paulson, K. E. & Schmid, C. W. Transcriptional inactivity of Alu repeats in HeLa cells. Nucleic Acids Res. 14, 6145–6158 (1986). Ullu, E. & Weiner, A. M. Upstream sequences modulate the internal promoter of the human 7SL RNA gene. Nature 318, 371–374 (1985). Batzer, M. A. et al. Standardized nomenclature for Alu repeats. J. Mol. Evol. 42, 3–6 (1996). Labuda, D. & Striker, G. Sequence conservation in Alu evolution. Nucleic Acids Res. 17, 2477–2491 (1989). Batzer, M. A. et al. Structure and variability of recently inserted Alu family members. Nucleic Acids Res. 18, 6793–6798 (1990). Arcot, S. S., Wang, Z., Weber, J. L., Deininger, P. L. & Batzer, M. A. Alu repeats: a source for the genesis of primate microsatellites. Genomics 29, 136–144 (1995). Economou, E. P., Bergen, A. W., Warren, A. C. & Antonarakis, S. E. The polydeoxyadenylate tract of Alu repetitive elements is polymorphic in the human genome. Proc. Natl Acad. Sci. USA 87, 2951–2954 (1990). Jurka, J. & Pethiyagoda, C. Simple repetitive DNA sequences from primates: compilation and analysis. J. Mol. Evol. 40, 120–126 (1995). Zuliani, G. & Hobbs, H. H. A high frequency of length polymorphisms in repeated sequences adjacent to Alu sequences. Am. J. Hum. Genet. 46, 963–969 (1990). Toth, G., Gaspari, Z. & Jurka, J. Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res. 10, 967–981 (2000). Beckman, J. S. & Weber, J. L. Survey of human and rat microsatellites. Genomics 12, 627–631 (1992). Aleman, C., Roy-Engel, A. M., Shaikh, T. H. & Deininger, P. L. Cis-acting influences on Alu RNA levels. Nucleic Acids Res. 28, 4755–4761 (2000). Shaikh, T. H., Roy, A. M., Kim, J., Batzer, M....
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online