Batzer and Deininger 2002 Nature Reviews Genetics

Proc natl acad sci usa 98 73847389 2001 hillis d m

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: . Phylogenetic relationships among cetartiodactyls based on insertions of short and long interspersed elements: hippopotamuses are the closest extant relatives of whales. Proc. Natl Acad. Sci. USA 96, 10261–10266 (1999). Nikaido, M. et al. Evolution of CHR-2 SINEs in cetartiodactyl genomes: possible evidence for the monophyletic origin of toothed whales. Mamm. Genome 12, 909–915 (2001). Nikaido, M. et al. Retroposon analysis of major cetacean lineages: the monophyly of toothed whales and the paraphyly of river dolphins. Proc. Natl Acad. Sci. USA 98, 7384–7389 (2001). Hillis, D. M. SINEs of the perfect character. Proc. Natl Acad. Sci. USA 96, 9979–9981 (1999). Cantrell, M. A. et al. An ancient retrovirus-like element contains hot spots for SINE insertion. Genetics 158, 769–777 (2001). Roy-Engel, A. M. et al. Non-traditional Alu evolution and primate genomic diversity. J. Mol. Biol. 316, 1033–1040 (2002). Edwards, M. C. & Gibbs, R. A. A human dimorphism resulting from loss of an Alu. Genomics 14, 590–597 (1992). Nakamura, Y. et al. Variable number of tandem repeat (VNTR) markers for human gene mapping. Science 235, 1616–1622 (1987). Botstein, D., White, R. L., Skolnick, M. & Davis, R. W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32, 314–331 (1980). Brookes, A. J. The essence of SNPs. Gene 234, 177–186 (1999). Chakravarti, A. It’s raining SNPs, hallelujah? Nature Genet. 19, 216–217 (1998). Pennisi, E. A closer look at SNPs suggests difficulties. Science 281, 1787–1789 (1998). Britten, R. J. DNA sequence insertion and evolutionary variation in gene regulation. Proc. Natl Acad. Sci. USA 93, 9374–9377 (1996). Britten, R. J. Mobile elements inserted in the distant past have taken on important functions. Gene 205, 177–182 (1997). A thorough compilation of mobile elements, which have been functionally significant in the genome. Makalowski, W., Mitchell, G. A. & Labuda, D. Alu sequences in the coding regions of mRNA: a source of protein variability. Trends Genet. 10, 188–193 (1994). Norris, J. et al. Identification of a new subclass of Alu DNA repeats which can function as estrogen receptordependent transcriptional enhancers. J. Biol. Chem. 270, 22777–22782 (1995). Szabo, Z. et al. Sequential loss of two neighboring exons of the tropoelastin gene during primate evolution. J. Mol. Evol. 49, 664–671 (1999). Slagel, V., Flemington, E., Traina-Dorge, V., Bradshaw, H. & Deininger, P. Clustering and subfamily relationships of the Alu family in the human genome. Mol. Biol. Evol. 4, 19–29 (1987). One of the first reports of subfamily structure in Alu elements. 91. Waldman, A. S. & Liskay, R. M. Dependence of intrachromosomal recombination in mammalian cells on uninterrupted homology. Mol. Cell. Biol. 8, 5350–5357 (1988). 92. Lobachev, K. S. et al. Inverted Alu repeats unstable in yeast are excluded from the human genome. EMBO J. 19, 3822–3830 (2000). 93. Stenger, J. E. et al. Biased distribution of inverted and direct Alus in the human genome: implications for insertion, exclusion, and genome stability. Genome Res. 11, 12–27 (2001). 94. Gebow, D., Miselis, N. & Liber, H. L. Homologous and nonhomologous recombination resulting in deletion: effects of p53 status, microhomology, and repetitive DNA length and orientation. Mol. Cell. Biol. 20, 4028–4035 (2000). 95. Hsu, S. J., Erickson, R. P., Zhang, J., Garver, W. S. & Heidenreich, R. A. Fine linkage and physical mapping suggests cross-over suppression with a retroposon insertion at the npc1 mutation. Mamm. Genome 11, 774–778 (2000). 96. Rieder, M. J., Taylor, S. L., Clark, A. G. & Nickerson, D. A. Sequence variation in the human angiotensin converting enzyme. Nature Genet. 22, 59–62 (1999). 97. Arcot, S. S. et al. High-resolution cartography of recently integrated human chromosome 19-specific Alu fossils. J. Mol. Biol. 281, 843–856 (1998). 98. Brookfield, J. F. Selection on Alu sequences? Curr. Biol. 11, 900–901 (2001). 99. Iizuka, M., Jones, C., Hayashi, K. & Sekiya, T. Mapping of 28 (CA)n microsatellite repeats and 13 Alu markers on human chromosome 11 using a panel of somatic cell hybrids. Genomics 19, 581–584 (1994). 100. Schlotterer, C. & Tautz, D. Slippage synthesis of simple sequence DNA. Nucleic Acids Res. 20, 211–215 (1992). 101. Levinson, G. & Gutman, G. A. Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol. Biol. Evol. 4, 203–221 (1987). 102. Justice, C. M. et al. Phylogenetic analysis of the Friedreich ataxia GAA trinucleotide repeat. J. Mol. Evol. 52, 232–238 (2001). 103. Campuzano, V. et al. Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271, 1423–1427 (1996). 104. Knight, A. et al. DNA sequences of Alu elements indicate a recent replacement of the human autosomal genetic complement. Proc. Natl Acad....
View Full Document

This note was uploaded on 04/06/2010 for the course COMPUTER S COMP5647 taught by Professor Dr.ping during the Spring '10 term at York University.

Ask a homework question - tutors are online