This preview shows pages 1–3. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: Preface Algorithmic ideas are pervasive, and their reach is apparent in examples both within computer science and beyond. Some of the major shifts in Internet routing standards can be viewed as debates over the deficiencies of one shortestpath algorithm and the relative advantages of another. The basic notions used by biologists to express similarities among genes and genomes have algorithmic definitions. The concerns voiced by economists over the feasibility of combinatorial auctions in practice are rooted partly in the fact that these auctions contain computationally intractable search problems as special cases. And algorithmic notions aren’t just restricted to wellknown and long standing problems; one sees the reﬂections of these ideas on a regular basis, in novel issues arising across a wide range of areas. The scientist from Yahoo! who told us over lunch one day about their system for serving ads to users was describing a set of issues that, deep down, could be modeled as a network ﬂow problem. So was the former student, now a management consultant working on staffing protocols for large hospitals, whom we happened to meet on a trip to New York City. The point is not simply that algorithms have many applications. The deeper issue is that the subject of algorithms is a powerful lens through which to view the field of computer science in general. Algorithmic problems form the heart of computer science, but they rarely arrive as cleanly packaged, mathematically precise questions. Rather, they tend to come bundled together with lots of messy, applicationspecific detail, some of it essential, some of it extraneous. As a result, the algorithmic enterprise consists of two fundamental components: the task of getting to the mathematically clean core of a problem, and then the task of identifying the appropriate algorithm design techniques, based on the structure of the problem. These two components interact: the more comfortable one is with the full array of possible design techniques, the more one starts to recognize the clean formulations that lie within messy xiv Preface problems out in the world. At their most effective, then, algorithmic ideas do not just provide solutions to wellposed problems; they form the language that lets you cleanly express the underlying questions. The goal of our book is to convey this approach to algorithms, as a design process that begins with problems arising across the full range of computing applications, builds on an understanding of algorithm design techniques, and results in the development of efficient solutions to these problems. We seek to explore the role of algorithmic ideas in computer science generally, and relate these ideas to the range of precisely formulated problems for which we can design and analyze algorithms. In other words, what are the underlying issues that motivate these problems, and how did we choose these particular ways of formulating them? How did we recognize which design principles wereways of formulating them?...
View Full
Document
 Spring '10
 Whity

Click to edit the document details