MECS 07. Statistical Models

MECS 07. Statistical Models - : Modeling and Evaluation of...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: : Modeling and Evaluation of Computer Systems (MECS) :7 (Statistical Models) : (Mohammad Abdollahi Azgomi) azgomi@iust.ac.ir :7 MECS#7: Statistical Models - By: M. Abdollahi Azgomi - IUST-CE 2 1 (probabilistic) . (deterministic) . : (sampling) . . ( ) (K-S K2 ) (goodness of fit) . . MECS#7: Statistical Models - By: M. Abdollahi Azgomi - IUST-CE 3 : (discrete random variables) (continuous random variables) (cumulative distribution function) (expectation) MECS#7: Statistical Models - By: M. Abdollahi Azgomi - IUST-CE 4 2 (finite) X X . (countably finite) () : . X Rx={0, 1, 2, ...} p(xi) = P(X = xi) : Rx X (range space) : p(xi) xi : i = 1, 2, ... p(xi) 1. p( xi ) 0, for all i 2. i =1 p( xi ) = 1 i=1, 2, ... [xi, p(xi)] p(xi) (probability distribution) . X (pmf: probability mass function) 5 MECS#7: Statistical Models - By: M. Abdollahi Azgomi - IUST-CE () : . : MECS#7: Statistical Models - By: M. Abdollahi Azgomi - IUST-CE 6 3 (Rx) X . () ... : [a, b] X P(a X b) = f (x)dx a b (pdf: probability density function) f(x) . MECS#7: Statistical Models - By: M. Abdollahi Azgomi - IUST-CE 7 : f(x) 1. f ( x ) 0 , for all x in R X 2. RX f ( x ) dx = 1 3. f ( x ) = 0 , if x is not in R X : 1. P ( X = x0 ) = 0, because f ( x)dx = 0 x0 x0 2. P (a X b) = P (a < X b) = P (a X < b) = P (a < X < b) MECS#7: Statistical Models - By: M. Abdollahi Azgomi - IUST-CE 8 4 X : : pdf 1 -x/2 e , x0 f ( x) = 2 0, otherwise . 2 X : 3 2 P(2 X 3) = 3 2 1 -x/ 2 1 3 e dx = e - x / 2 dx = 0.145 2 2 2 9 MECS#7: Statistical Models - By: M. Abdollahi Azgomi - IUST-CE X (cumulative distribution function (cdf)) : Fx F(X) F(x) = Fx = P(X x) F ( x) = p( xi ) all xi x : X : X F ( x) = f (t )dt - x : 1. F is nondecreasing function : If a < b, then F (a ) F (b) 2. lim x F ( x) = 1 3. lim x - F ( x) = 0 : . cdf X P( a < X b) = F (b) - F (a ), for all a < b MECS#7: Statistical Models - By: M. Abdollahi Azgomi - IUST-CE 10 5 : F ( x) = 1 x -t / 2 -x / 2 0 e dt = 1- e 2 P(0 X 2) = F (2) - F (0) = F (2) = 1- e-1 = 0.632 P( 2 X 3) = F (3) - F (2) = (1 - e - (3 / 2 ) ) - (1 - e -1 ) = 0.145 MECS#7: Statistical Models - By: M. Abdollahi Azgomi - IUST-CE 11 : (expected value) E ( x) = xi p ( xi ) all i : X : X E ( x) = xf ( x)dx - Var(X) V(X) 2 : V(X) = E[(X E[X]2)] V(X) = E(X2) [E(x)]2 . (standard deviation) MECS#7: Statistical Models - By: M. Abdollahi Azgomi - IUST-CE 12 6 : 1 -x / 2 E( X ) = xe-x / 2dx = - xe + e-x / 2dx = 2 0 2 0 0 : E[X2] E( X 2 ) = 1 2 -x / 2 -x / 2 + e-x / 2dx = 8 0 x e dx = -x 2 e 0 2 0 : V ( X ) = 8 - 22 = 4 = V (X ) = 2 MECS#7: Statistical Models - By: M. Abdollahi Azgomi - IUST-CE 13 : (queueing systems) (inventory and supply-chain systems) (reliability and maintainability) :(limited data) . MECS#7: Statistical Models - By: M. Abdollahi Azgomi - IUST-CE 14 7 . : : : (Weibull) (gamma) . MECS#7: Statistical Models - By: M. Abdollahi Azgomi - IUST-CE 15 : .(lead time) : : . MECS#7: Statistical Models - By: M. Abdollahi Azgomi - IUST-CE 16 8 :(time to failure (TTF)) : (standby redundancy) : TT TTF : : MECS#7: Statistical Models - By: M. Abdollahi Azgomi - IUST-CE 17 : . : (Bernoulli) (binomial) .(hyperexponential) MECS#7: Statistical Models - By: M. Abdollahi Azgomi - IUST-CE 18 9 . : MECS#7: Statistical Models - By: M. Abdollahi Azgomi - IUST-CE 19 n : : . j Xj = 1 . j Xj = 0 : ( ) x j = 1, j = 1,2,...,n p, p j ( x j ) = p( x j ) = 1- p = q, x j = 0,j = 1,2,...,n 0, otherwise E(Xj) = p V(Xj) = p(1-p) = pq : : n : p(x1,x2,..., xn) = p1(x1)p2(x2) ... pn(xn) MECS#7: Statistical Models - By: M. Abdollahi Azgomi - IUST-CE 20 10 n X : n x n-x p q , x = 0,1,2,...,n p( x) = x 0, otherwise . E(x) = p + p + ... + p = n*p V(X) = pq + pq + ... + pq = n*pq MECS#7: Statistical Models - By: M. Abdollahi Azgomi - IUST-CE x n-x : 21 : (X) : q x-1 p, x = 0,1,2,...,n p( x) = otherwise 0, E(x) = 1/p V(X) = q/p2 : . k (X) : k p Y y -1 y-k k q p , y = k, k +1, k + 2,... p( x) = k -1 0, otherwise E(Y) = k/p V(X) = kq/p2 22 MECS#7: Statistical Models - By: M. Abdollahi Azgomi - IUST-CE 11 . : cdf pdf > 0 e - x p( x) = x! , x = 0,1,... 0, otherwise E(X) = = V(X) e- i F ( x) = i! i =0 x MECS#7: Statistical Models - By: M. Abdollahi Azgomi - IUST-CE 23 : . = 2 p(3) p(3) = e-223/3! = 0.18 : F(x) = F(3) F(2) = 0.857-0.677 = 0.18 = 1 p(0) p(1) = 1 F(1) = 0.594 p(2 or more) MECS#7: Statistical Models - By: M. Abdollahi Azgomi - IUST-CE 24 12 ) .( : (uniform) (exponential) (normal) (Weibull) (lognormal) MECS#7: Statistical Models - By: M. Abdollahi Azgomi - IUST-CE 25 U(a, b) (a, b) X : cdf pdf 1 , a xb f ( x) = b - a 0, otherwise x<a 0, x -a F ( x) = , a x<b b - a xb 1, : . [F(x2) F(x1) = (x2-x1)/(b-a)] P(x1 < X < x2) V(X) = (b-a)2/12 : E(X) = (a+b)/2 : (random numbers) U(0, 1) . MECS#7: Statistical Models - By: M. Abdollahi Azgomi - IUST-CE 26 13 >0 X : e - x , x 0 f ( x) = 0, x < 0 : CDF F ( x) = e -x dx = 1 - e -x , x 0 0 x 8 . MECS#7: Statistical Models - By: M. Abdollahi Azgomi - IUST-CE 27 : pdf X f ( x) = 1 x - 2 1 exp - , - < x < 2 2 - < < : : >0 2 . X ~ N(,2) : lim x - f ( x ) = 0, and lim x f ( x) = 0 :f(x) f(-x)=f(+x) : pdf . x = pdf MECS#7: Statistical Models - By: M. Abdollahi Azgomi - IUST-CE 28 14 : pdf X x - -1 x - exp - , x f ( x) = 0, otherwise : (- < < ) :(location) ( > 0) :(scale) ( > 0) :(shape) When = 1, X ~ exp( = 1/) = 1 = 0 : MECS#7: Statistical Models - By: M. Abdollahi Azgomi - IUST-CE 29 pdf (lognormal) X : =1, 2=0.5,1,2. 1 (ln x - ) 2 exp - , x > 0 f ( x ) = 2 x 2 2 0, otherwise E(X) = e+ /2 : V(X) = e2+ /2 (e - 1) : 2 2 2 : (Y = ln X ) X = eY ~ lognormal(, 2) : Y ~ N(, 2) . 2 MECS#7: Statistical Models - By: M. Abdollahi Azgomi - IUST-CE 30 15 (observed values) . (empirical distribution) . (extrapolation) (interpolation) . : . . : MECS#7: Statistical Models - By: M. Abdollahi Azgomi - IUST-CE 31 . (input modeling) . . MECS#7: Statistical Models - By: M. Abdollahi Azgomi - IUST-CE 32 16 ...
View Full Document

This note was uploaded on 04/08/2010 for the course COMPUTER E 409232 taught by Professor Mohammadabdolahiazgomiph.d during the Spring '10 term at Islamic University.

Ask a homework question - tutors are online