asso-FPTree-Supp

asso-FPTree-Supp - SupplementaryNote FromtheBook:DataMining:

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon
Data Mining: Concepts and Techniques 1 Supplementary Note From the Book: Data Mining:  Concepts and Techniques ©Jiawei Han and Micheline Kamber
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
April 8, 2010 Data Mining: Concepts and Techniques 2 Construct FP-tree from a  Transaction DB {} f:4 c:1 b:1 p:1 b:1 c:3 a:3 b:1 m:2 p:2 m:1 Header Table Item frequency head f 4 c 4 a 3 b 3 m 3 p 3 min_support = 0.5 TID Items bought (ordered) frequent items 100 { f, a, c, d, g, i, m, p } { f, c, a, m, p } 200 { a, b, c, f, l, m, o } { f, c, a, b, m } 300 { b, f, h, j, o } { f, b } 400 { b, c, k, s, p } { c, b, p } 500 { a, f, c, e, l, p, m, n } { f, c, a, m, p } Steps: 1. Scan DB once, find  frequent 1-itemset (single  item pattern) 2. Order frequent items in  frequency descending order 3. Scan DB again, construct  FP-tree Note: An item is freq  item if it appears in at  least 3 transactions!
Background image of page 2
Data Mining: Concepts and Techniques 3 FP-tree with Single Path Suppose an FP-tree has a single path
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 4
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 10

asso-FPTree-Supp - SupplementaryNote FromtheBook:DataMining:

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online