{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

# hw11 - lavallo(jhl936 Homework 11 orin(58140 This print-out...

This preview shows pages 1–3. Sign up to view the full content.

lavallo (jhl936) – Homework 11 – florin – (58140) 1 This print-out should have 23 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering. 001 10.0 points A satellite circles planet Roton every 4 . 9 h in an orbit having a radius of 1 . 7 × 10 7 m. If the radius of Roton is 1 . 292 × 10 7 m, what is the magnitude of the free-fall acceleration on the surface of Roton? Correct answer: 3 . 73409 m / s 2 . Explanation: Basic Concepts: Newton’s law of gravi- tation F g = G m 1 m 2 r 2 . Kepler’s third law T 2 = parenleftbigg 4 π 2 G M parenrightbigg r 3 . The free-fall acceleration a on the surface of the planet is the acceleration which a body in free fall will feel due to gravity F g = G M m R 2 = m a , where M is the mass of planet Roton. This acceleration a is a = G M R 2 , (1) the number which is g on Earth. Here, how- ever, the mass M is unknown, so we try to find this from the information given about the satellite. Use Kepler’s third law for the period of the orbit T 2 = parenleftbigg 4 π 2 G M parenrightbigg r 3 . (2) By multiplying both sides with R 2 and com- paring to equation (1), we can identify our a in the right hand side T 2 R 2 = parenleftbigg 4 π 2 a parenrightbigg r 3 . If we solve for a , we obtain a = parenleftbigg 4 π 2 T 2 R 2 parenrightbigg r 3 = 3 . 73409 m / s 2 which is our answer. Although identifying a in this way is a “quick” way of solving the problem, we could just as well have calculated the planet mass M explicitly from equation (2) and inserted into equation (1). 002 10.0 points Two planets A and B, where B has twice the mass of A, orbit the Sun in elliptical orbits. The semi-major axis of the elliptical orbit of planet B is two times larger than the semi- major axis of the elliptical orbit of planet A. What is the ratio of the orbital period of planet B to that of planet A? 1. T B T A = 8 correct 2. T B T A = 1 8 3. T B T A = 8 4. T B T A = 1 4 5. T B T A = 1 6. T B T A = 2 7. T B T A = radicalbigg 1 2 8. T B T A = radicalbigg 1 8 9. T B T A = 1 2 10. T B T A = 2 Explanation: Basic Concept: Kepler’s Third Law is T 2 = parenleftbigg 4 π 2 G M S parenrightbigg a 3 = K S a 3 ,

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
lavallo (jhl936) – Homework 11 – florin – (58140) 2 where K S = 4 π 2 G M S = 2 . 97 × 10 19 s 2 / m 2 , and where a is the semi-major axis of the elliptical orbit of the planet ( a = r the radius of a planet in a circular orbit). Solution: According to Kepler’s third law, the square of the orbital period is proportional to the cube of the semi-major axis “ a ” of the elliptical orbit. Therefore, T 2 A a 3 A = T 2 B a 3 B . Therefore, T B T A = parenleftbigg a B a A parenrightbigg 3 2 = 2 3 / 2 = 8 . 003 10.0 points Given: G = 6 . 67259 × 10 11 N m 2 / kg 2 Calculate the work required to move a planet’s satellite of mass 571 kg from a cir- cular orbit of radius 2 R to one of radius 3 R , where 8 . 8 × 10 6 m is the radius of the planet.
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 14

hw11 - lavallo(jhl936 Homework 11 orin(58140 This print-out...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online