{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

# hw6 - EE364b Prof S Boyd EE364b Homework 6 1 Conjugate...

This preview shows pages 1–2. Sign up to view the full content.

EE364b Prof. S. Boyd EE364b Homework 6 1. Conjugate gradient residuals. Let r ( k ) = b Ax ( k ) be the residual associated with the k th element of the Krylov sequence. Show that r ( j ) T r ( k ) = 0 for j negationslash = k . In other words, the Krylov sequence residuals are mutually orthogonal. Do not use the explicit algorithm to show this property; use the basic definition of the Krylov sequence, i.e. , x ( k ) minimizes (1 / 2) x T Ax b T x over K k . 2. CG and PCG example. In this problem you explore a variety of methods to solve Ax = b , where A S n ++ has block diagonal plus sparse structure: A = A blk + A sp , where A blk S n ++ is block diagonal and A sp S n is sparse. For simplicity we assume A blk consists of k blocks of size m , so n = mk . The matrix A sp has N nonzero elements. (a) What is the approximate flop count for solving Ax = b if we treat A as dense? (b) What is the approximate flop count for an iteration of CG? (Assume multiplication by A blk and A sp are done exploiting their respective structures.) You can ignore the handful of inner products that need to be computed. (c) Now suppose that we use PCG, with preconditioner M = A - 1 blk . What is the approximate flop count for computing the Cholesky factorization of A blk ? What is the approximate flop count per iteration of PCG, once a Cholesky factorization of A blk if found? (d) Now consider the specific problem with A blk , A , and b generated by ex_blockprecond.m . Solve the problem using direct methods, treating A as dense, and also treating A as sparse. Run CG on the problem for a hundred iterations or so, and plot the relative residual versus iteration number. Run PCG on the same problem, using the block-diagonal preconditioner M = A - 1 blk . Give the solution times for dense direct, sparse direct, CG (to relative residual 10 - 4 , say), and PCG (to relative residual 10 - 8 , say). For PCG break out the time as time for initial Cholesky factorization, and time for PCG iterations. Hints. To force Matlab to treat A as dense, use full(A) .

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern