20082ee102_1_HW_8_solution_2

# 20082ee102_1_HW_8_solution_2 - HW8 solution SPRING 2008 EE...

This preview shows pages 1–3. Sign up to view the full content.

HW8 solution, SPRING 2008, EE 102 1. (Prob.2.) F { cosw 0 tf ( t ) } = F { e iw 0 t + e - iw 0 t 2 f ( t ) } = (1 / 2) F { e iw 0 t f ( t ) } +(1 / 2) F { e - iw 0 t f ( t ) } = 1 2 F ( iw - iw 0 ) + 1 2 F ( iw + iw 0 ) (Prob.3)The standard Fourier relation is F ( iw ) = Z -∞ e - iwt f ( t ) dt Take derivative of the above equation d n F ( iw ) dw n = Z -∞ d n e - iwt dw n f ( t ) dt = Z -∞ e - iwt ( - it ) n f ( t ) dt So d n F ( iw ) dw n and ( - it ) n f ( t ) are Fourier transform pair. (Prob.4) Using the properties in Prob.2 above, and F { 1 } = 2 πδ ( w ), we obtain F { cosw 0 t } = πδ ( w - w 0 ) + πδ ( w + w 0 ) 2. Note F { e iw 0 t } = 2 πδ ( w - w 0 ) and f ( t ) = n = -∞ F n e inw 0 t F { f ( t ) } = Z -∞ e - iwt f ( t ) dt = Z -∞ e - iwt X n = -∞ F n e inw 0 t dt = X n = -∞ F n Z -∞ e - iwt e inw 0 t dt = X n = -∞ F n F { e inw 0 t } = X n = -∞ 2 πF n δ ( w - nw 0 ) 1

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
3. (i) Note:
This is the end of the preview. Sign up to access the rest of the document.

### Page1 / 5

20082ee102_1_HW_8_solution_2 - HW8 solution SPRING 2008 EE...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online