This preview shows pages 1–2. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: rabbani (tar547) HW03 Radin (56635) 1 This printout should have 20 questions. Multiplechoice questions may continue on the next column or page find all choices before answering. 001 10.0 points Decide which of the following regions has area = lim n n summationdisplay i = 1 2 n tan i 2 n without evaluating the limit. 1. braceleftBig ( x, y ) : 0 y tan x, x 4 bracerightBig 2. braceleftBig ( x, y ) : 0 y tan 2 x, x 4 bracerightBig 3. braceleftBig ( x, y ) : 0 y tan 3 x, x 4 bracerightBig 4. braceleftBig ( x, y ) : 0 y tan 2 x, x 2 bracerightBig 5. braceleftBig ( x, y ) : 0 y tan 3 x, x 2 bracerightBig 6. braceleftBig ( x, y ) : 0 y tan x, x 2 bracerightBig 002 10.0 points Estimate the area under the graph of f ( x ) = 3 sin x between x = 0 and x = 3 using five approx imating rectangles of equal widths and right endpoints. 1. area 1 . 747 2. area 1 . 767 3. area 1 . 787 4. area 1 . 707 5. area 1 . 727 003 10.0 points Rewrite the sum 6 n parenleftBig 5 + 2 n parenrightBig 2 + 6 n parenleftBig 5 + 4 n parenrightBig 2 + . . . + 6 n parenleftBig 5 + 2 n n parenrightBig 2 using sigma notation. 1. n summationdisplay i =1 6 i n parenleftBig 5 + 2 i n parenrightBig 2 2. n summationdisplay i =1 6 n parenleftBig 5 i + 2 i n parenrightBig 2 3....
View
Full
Document
This note was uploaded on 04/13/2010 for the course M 408L taught by Professor Radin during the Spring '08 term at University of Texas at Austin.
 Spring '08
 RAdin

Click to edit the document details