This preview shows pages 1–3. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: gutierrez (ig3472) HW06 Neitzke (56585) 1 This printout should have 17 questions. Multiplechoice questions may continue on the next column or page find all choices before answering. 001 10.0 points Determine the integral I = integraldisplay 1 1 + 9( x 1) 2 dx . 1. I = tan 1 3( x 1) + C 2. I = 3 sin 1 parenleftBig x 1 3 parenrightBig + C 3. I = sin 1 3( x 1) + C 4. I = 1 3 tan 1 3( x 1) + C correct 5. I = 1 3 sin 1 3( x 1) + C 6. I = 3 tan 1 parenleftBig x 1 3 parenrightBig + C Explanation: Since d dx tan 1 x = 1 1 + x 2 , the substitution u = 3( x 1) is suggested. For then du = 3 dx , in which case I = 1 3 integraldisplay 1 1 + u 2 du = 1 3 tan 1 u + C , with C an arbitrary constant. Consequently, I = 1 3 tan 1 3( x 1) + C . keywords: 002 10.0 points Evaluate the definite integral I = integraldisplay 1 8 1 1 16 x 2 dx . Correct answer: 0 . 1309. Explanation: Since integraldisplay 1 1 x 2 dx = sin 1 x + C , a change of variable x is needed to reduce I to this form. Set u = 4 x . Then du = 4 dx , and x = 0 = u = 0 , while x = 1 8 = u = 1 2 . In this case I = 1 4 integraldisplay 1 2 1 1 u 2 du = bracketleftbigg 1 4 sin 1 u bracketrightbigg 1 2 . Consequently, I = 1 4 arcsin parenleftbigg 1 2 parenrightbigg = 0 . 1309 . 003 10.0 points Determine the indefinite integral I = integraldisplay ( 1 x 2 ) 1 / 2 1 + 2 sin 1 x dx . 1. I = 1 2 ( 1 + 2 sin 1 x ) 2 + C 2. I = 1 4 ( 1 + 2 sin 1 x ) 2 + C 3. I = 1 4 ln vextendsingle vextendsingle 1 + 2 sin 1 x vextendsingle vextendsingle + C 4. I = 1 2 ln vextendsingle vextendsingle 1 + 2 sin 1 x vextendsingle vextendsingle + C correct 5. I = 1 2 ln vextendsingle vextendsingle 1 + 2 sin 1 x vextendsingle vextendsingle + C 6. I = 1 4 ( 1 + 2 sin 1 x ) 2 + C gutierrez (ig3472) HW06 Neitzke (56585) 2 Explanation: Set u = 1 + 2 sin 1 x . Then du = 2 1 x 2 dx = 2 ( 1 x 2 ) 1 / 2 dx , so I = 1 2 integraldisplay 1 u du = 1 2 ln vextendsingle vextendsingle 1 + 2 sin 1 x vextendsingle vextendsingle + C . Consequently, I = 1 2 ln vextendsingle vextendsingle 1 + 2 sin 1 x vextendsingle vextendsingle + C . 004 10.0 points Evaluate the definite integral I = integraldisplay 2 sin 1 + cos 2 d . 1. I = correct 2. I = 5 4 3. I = 3 2 4. I = 3 4 5. I = 7 4 Explanation: Since d d cos = sin , the substitution u = cos is suggested. For then du = sin d , while = 0 = u = 1 , = = u = 1 , so that I = 2 integraldisplay 1 1 1 1 + u 2 du = 2 integraldisplay 1 1 1 1 + u 2 du , which can now be integrated using the fact that d du tan 1 u = 1 1 + u 2 ....
View
Full
Document
This note was uploaded on 04/13/2010 for the course MATH 408L taught by Professor Gogolev during the Spring '09 term at University of Texas at Austin.
 Spring '09
 GOGOLEV
 Calculus

Click to edit the document details