gnfcross2_10

gnfcross2_10 - Content-type application/mathematica Wolfram...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
(* Content-type: application/mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 7.0' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 145, 7] NotebookDataLength[ 54593, 1379] NotebookOptionsPosition[ 51843, 1282] NotebookOutlinePosition[ 52387, 1301] CellTagsIndexPosition[ 52344, 1298] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[CellGroupData[{ Cell["\<\ Calculation of the Velocity Profile using the Cross GNF model \ \>", "Subsubtitle", CellChangeTimes->{ 3.480090686604507*^9, {3.480090722897367*^9, 3.480090765918797*^9}}, TextAlignment->Center, FormatType->"TextForm", Background->GrayLevel[0.85]], Cell["\<\ Define a sequence of radial postions \"rpos\" in the tube. Even without a \ constitutive model, the shear stress at these positions can be calculated \ from the solution to the Cauchy stress equations.\ \>", "Subsubtitle", CellChangeTimes->{ 3.480090686604507*^9, {3.480090722897367*^9, 3.480090843818458*^9}, { 3.4800908750738*^9, 3.4800908773371563`*^9}}, FormatType->"TextForm", Background->GrayLevel[0.85]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"R", "=", RowBox[{"Table", "[", RowBox[{ RowBox[{"n", "*", "0.05"}], ",", RowBox[{"{", RowBox[{"n", ",", "1", ",", "20"}], "}"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.4800964174231653`*^9, 3.480096424868299*^9}, 3.480097180173881*^9}], Cell[BoxData[ RowBox[{"{", RowBox[{
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
"0.05`", ",", "0.1`", ",", "0.15000000000000002`", ",", "0.2`", ",", "0.25`", ",", "0.30000000000000004`", ",", "0.35000000000000003`", ",", "0.4`", ",", "0.45`", ",", "0.5`", ",", "0.55`", ",", "0.6000000000000001`", ",", "0.65`", ",", "0.7000000000000001`", ",", "0.75`", ",", "0.8`", ",", "0.8500000000000001`", ",", "0.9`", ",", "0.9500000000000001`", ",", "1.`"}], "}"}]], "Output", CellChangeTimes->{3.4800909367609987`*^9, 3.480096427406993*^9, 3.4800971808838997`*^9}] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{ SubscriptBox["\[Tau]", "rz"], "[", "r_", "]"}], ":=", RowBox[{"dpdz", "*", RowBox[{"r", "/", "2"}]}]}]], "Input", CellChangeTimes->{{3.4800964397243853`*^9, 3.48009645198158*^9}, { 3.480096503411237*^9, 3.4800965225684967`*^9}, {3.48009702181868*^9, 3.4800970461391*^9}}] }, Open ]], Cell[CellGroupData[{ Cell[TextData[{ "Use the Cross model to define the viscosity function \[Eta][", Cell[BoxData[ OverscriptBox["\[Gamma]", "."]], CellChangeTimes->{{3.4800966684470797`*^9, 3.480096676923024*^9}}], "]. " }], "Subsubtitle", CellChangeTimes->{ 3.480090686604507*^9, {3.480090722897367*^9, 3.4800908983832607`*^9}, { 3.4800978688559113`*^9, 3.480097891850883*^9}}, Background->GrayLevel[0.85]], Cell[BoxData[ RowBox[{ RowBox[{ SubscriptBox["\[Eta]", "\[Infinity]"], "=", "0.0026"}], ";", RowBox[{ SubscriptBox["\[Eta]", "0"], "=", "1.82"}], ";", RowBox[{"m", "=", "0.6"}], ";", RowBox[{"k", "=", "1.5"}], ";"}]], "Input", CellChangeTimes->{{3.480096869902216*^9, 3.480096901707423*^9}}],
Background image of page 2
Image of page 3
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 04/14/2010 for the course ECH 142 taught by Professor Phillips during the Spring '10 term at UC Davis.

Page1 / 24

gnfcross2_10 - Content-type application/mathematica Wolfram...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online