Solutions_Assignment3_w10

# Solutions_Assignment3_w10 - Carleton University Department...

This preview shows pages 1–4. Sign up to view the full content.

1 of 7 Carleton University Department of Systems and Computer Engineering SYSC-4405: Digital Signal processing Winter Semester 2010 Solutions of Assignment # 3 Date Due: March 5, 2010, before 1:00 p.m. ______________________________________________________________________________ Problem 1 Determine the z-transform of the following signals and sketch the corresponding pole-zero pat- tern a) , a is real and N is a positive integer. x(n) can also be rewitten as: or Where , with a ROC: pole locations: and Zero locations: , for and xn () a n 2 π n N --------- ⎝⎠ ⎛⎞ sin un un N [] = a n 2 π n N sin a n 2 π n N sin = a n 2 π n N sin a N a nN 2 π N ------------------------ sin = fn a N fn N = f n a n 2 π n N sin az 1 2 π N ------ sin 12 1 2 π N cos a 2 z 2 + ---------------------------------------------------------- = Xz 1 a N z N Fz 1 a N z N 1 2 π N sin 1 2 π N cos a 2 z 2 + == za > 1 2 π N cos a 2 z 2 +0 p 1 p 2 , ae j 2 π N ----- j 2 π N , z N 1 0 N 1 poles at the origin = z N a N a N e j 2 π k z j 2 π k N -------- = k 012 N 1 ,,, , = z 0 =

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
2 of 7 b) or where and From the transform tables we have: , , and 2 π N ------ 2 π N xn () 1 2 -- n 2 1 3 ⎝⎠ ⎛⎞ n 1 un 1 = 2 n 2 1 3 n 1 1 n 1 2 2 n 1 1 ++ [] 1 3 n 1 1 == 2 gn 1 = n 2 fn 2 nf n = f n 1 3 n = f n 1 1 1 3 z 1 ------------------- 1 3 z 1 1 1 3 z 1 2 --------------------------- n 2 z d dz ----- 1 3 z 1 1 1 3 z 1 2 z 1 1 3 z 1 2 1 3 z 2 2 1 3 z 1 1 1 3 z 1 1 3 z 2 1 1 3 z 1 4 ------------------------------------------------------------------------------------------------------------------- = n 2 z 1 3 z 2 1 1 3 z 1 –2 1 3 z 1 1 1 3 z 1 3 ------------------------------------------------------- 1 3 z 1 1 1 3 z 1 + 1 1 3 z 1 3 =
3 of 7

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

## This document was uploaded on 04/14/2010.

### Page1 / 7

Solutions_Assignment3_w10 - Carleton University Department...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online